當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.VarLenFeature方法代碼示例

本文整理匯總了Python中tensorflow.VarLenFeature方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.VarLenFeature方法的具體用法?Python tensorflow.VarLenFeature怎麽用?Python tensorflow.VarLenFeature使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.VarLenFeature方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_schema_txt_to_feature_spec

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import VarLenFeature [as 別名]
def test_schema_txt_to_feature_spec(self):
        schema_txt = """
            feature {
                name: "test_feature"
                value_count {
                    min: 1
                    max: 1
                }
                type: FLOAT
                presence {
                    min_count: 1
                }
            }
        """.encode("utf-8")

        with NamedTemporaryFile() as f:
            f.write(schema_txt)
            f.flush()
            os.fsync(f)
            feature_spec = schema_txt_file_to_feature_spec(f.name)
            self.assertEqual(feature_spec, {"test_feature": tf.VarLenFeature(dtype=tf.float32)}) 
開發者ID:spotify,項目名稱:spotify-tensorflow,代碼行數:23,代碼來源:tf_schema_utils_test.py

示例2: _write_test_data

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import VarLenFeature [as 別名]
def _write_test_data():
        schema = feature_spec_to_schema({"f0": tf.VarLenFeature(dtype=tf.int64),
                                         "f1": tf.VarLenFeature(dtype=tf.int64),
                                         "f2": tf.VarLenFeature(dtype=tf.int64)})
        batches = [
            [1, 4, None],
            [2, None, None],
            [3, 5, None],
            [None, None, None],
        ]

        example_proto = [example_pb2.Example(features=feature_pb2.Features(feature={
            "f" + str(i): feature_pb2.Feature(int64_list=feature_pb2.Int64List(value=[f]))
            for i, f in enumerate(batch) if f is not None
        })) for batch in batches]

        return DataUtil.write_test_data(example_proto, schema) 
開發者ID:spotify,項目名稱:spotify-tensorflow,代碼行數:19,代碼來源:dataset_test.py

示例3: _extract_features_batch

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import VarLenFeature [as 別名]
def _extract_features_batch(self, serialized_batch):
        features = tf.parse_example(
            serialized_batch,
            features={'images': tf.FixedLenFeature([], tf.string),
                'imagepaths': tf.FixedLenFeature([], tf.string),
                'labels': tf.VarLenFeature(tf.int64),
                 })

        bs = features['images'].shape[0]
        images = tf.decode_raw(features['images'], tf.uint8)
        w, h = tuple(CFG.ARCH.INPUT_SIZE)
        images = tf.cast(x=images, dtype=tf.float32)
        #images = tf.subtract(tf.divide(images, 128.0), 1.0)
        images = tf.reshape(images, [bs, h, -1, CFG.ARCH.INPUT_CHANNELS])

        labels = features['labels']
        labels = tf.cast(labels, tf.int32)

        imagepaths = features['imagepaths']

        return images, labels, imagepaths 
開發者ID:Mingtzge,項目名稱:2019-CCF-BDCI-OCR-MCZJ-OCR-IdentificationIDElement,代碼行數:23,代碼來源:read_tfrecord.py

示例4: prepare_serialized_examples

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import VarLenFeature [as 別名]
def prepare_serialized_examples(self, serialized_examples):
    # set the mapping from the fields to data types in the proto
    num_features = len(self.feature_names)
    assert num_features > 0, "self.feature_names is empty!"
    assert len(self.feature_names) == len(self.feature_sizes), \
    "length of feature_names (={}) != length of feature_sizes (={})".format( \
    len(self.feature_names), len(self.feature_sizes))

    feature_map = {"video_id": tf.FixedLenFeature([], tf.string),
                   "labels": tf.VarLenFeature(tf.int64)}
    for feature_index in range(num_features):
      feature_map[self.feature_names[feature_index]] = tf.FixedLenFeature(
          [self.feature_sizes[feature_index]], tf.float32)

    features = tf.parse_example(serialized_examples, features=feature_map)

    labels = tf.sparse_to_indicator(features["labels"], self.num_classes)
    labels.set_shape([None, self.num_classes])
    concatenated_features = tf.concat([
        features[feature_name] for feature_name in self.feature_names], 1)

    return features["video_id"], concatenated_features, labels, tf.ones([tf.shape(serialized_examples)[0]]) 
開發者ID:antoine77340,項目名稱:Youtube-8M-WILLOW,代碼行數:24,代碼來源:readers.py

示例5: _make_schema

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import VarLenFeature [as 別名]
def _make_schema(columns, types, default_values):
  """Input schema definition.

  Args:
    columns: column names for fields appearing in input.
    types: column types for fields appearing in input.
    default_values: default values for fields appearing in input.
  Returns:
    feature_set dictionary of string to *Feature.
  """
  result = {}
  assert len(columns) == len(types)
  assert len(columns) == len(default_values)
  for c, t, v in zip(columns, types, default_values):
    if isinstance(t, list):
      result[c] = tf.VarLenFeature(dtype=t[0])
    else:
      result[c] = tf.FixedLenFeature(shape=[], dtype=t, default_value=v)
  return dataset_schema.from_feature_spec(result) 
開發者ID:GoogleCloudPlatform,項目名稱:cloudml-samples,代碼行數:21,代碼來源:movielens.py

示例6: prepare_reader

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import VarLenFeature [as 別名]
def prepare_reader(self, filename_queue, batch_size=1024):

    reader = tf.TFRecordReader()
    _, serialized_examples = reader.read_up_to(filename_queue, batch_size)

    # set the mapping from the fields to data types in the proto
    num_features = len(self.feature_names)
    assert num_features > 0, "self.feature_names is empty!"
    assert len(self.feature_names) == len(self.feature_sizes), \
    "length of feature_names (={}) != length of feature_sizes (={})".format( \
    len(self.feature_names), len(self.feature_sizes))

    feature_map = {"video_id": tf.FixedLenFeature([], tf.string),
                   "labels": tf.VarLenFeature(tf.int64)}
    for feature_index in range(num_features):
      feature_map[self.feature_names[feature_index]] = tf.FixedLenFeature(
          [self.feature_sizes[feature_index]], tf.float32)

    features = tf.parse_example(serialized_examples, features=feature_map)
    labels = tf.sparse_to_indicator(features["labels"], self.num_classes)
    labels.set_shape([None, self.num_classes])
    concatenated_features = tf.concat([
        features[feature_name] for feature_name in self.feature_names], 1)

    return features["video_id"], concatenated_features, labels, tf.ones([tf.shape(serialized_examples)[0]]) 
開發者ID:wangheda,項目名稱:youtube-8m,代碼行數:27,代碼來源:readers.py

示例7: example_parser

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import VarLenFeature [as 別名]
def example_parser(example_serialized):
    
    feature_map = {
        'image/encoded': tf.FixedLenFeature([], dtype=tf.string, default_value=''),
        'image/timestamp': tf.FixedLenFeature([], dtype=tf.int64, default_value=-1),
        'steer/angle': tf.FixedLenFeature([2], dtype=tf.float32, default_value=[0.0, 0.0]),
        'steer/timestamp': tf.FixedLenFeature([2], dtype=tf.int64, default_value=[-1, -1]),
        #'gps/lat': tf.FixedLenFeature([2], dtype=tf.float32, default_value=[0.0, 0.00]),
        #'gps/long': tf.FixedLenFeature([2], dtype=tf.float32, default_value=[0.0, 0.0]),
        #'gps/timestamp': tf.VarLenFeature(tf.int64),
    }

    features = tf.parse_single_example(example_serialized, feature_map)

    image_timestamp = tf.cast(features['image/timestamp'], dtype=tf.int64)
    steering_angles = features['steer/angle']
    steering_timestamps = features['steer/timestamp']

    return features['image/encoded'], image_timestamp, steering_angles, steering_timestamps 
開發者ID:rwightman,項目名稱:udacity-driving-reader,代碼行數:21,代碼來源:readtf.py

示例8: load_tfrecord

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import VarLenFeature [as 別名]
def load_tfrecord(self):
        opts = self._options
        file_names = glob(opts.train_dir + '/output.tfrecord')
        file_queue = tf.train.string_input_producer(file_names,
                                                    num_epochs=opts.epochs_to_train)
        reader = tf.TFRecordReader()
        _, record_string = reader.read(file_queue)
        features = {'sentence': tf.VarLenFeature(tf.int64)}
        one_line_example = tf.parse_single_example(record_string, features=features)
        capacity = PRELOAD_LINES
        batch_lines = tf.train.batch(one_line_example,
                                     batch_size=BATCH_LINES,
                                     capacity=capacity,
                                     num_threads=opts.io_threads)
        corpus_slice = batch_lines['sentence'].values
        return corpus_slice 
開發者ID:koala-ai,項目名稱:tensorflow_nlp,代碼行數:18,代碼來源:word2vec.py

示例9: parse_example_batch

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import VarLenFeature [as 別名]
def parse_example_batch(serialized):
  """Parses a batch of tf.Example protos.

  Args:
    serialized: A 1-D string Tensor; a batch of serialized tf.Example protos.
  Returns:
    encode: A SentenceBatch of encode sentences.
    decode_pre: A SentenceBatch of "previous" sentences to decode.
    decode_post: A SentenceBatch of "post" sentences to decode.
  """
  features = tf.parse_example(
      serialized,
      features={
          "encode": tf.VarLenFeature(dtype=tf.int64),
          "decode_pre": tf.VarLenFeature(dtype=tf.int64),
          "decode_post": tf.VarLenFeature(dtype=tf.int64),
      })

  def _sparse_to_batch(sparse):
    ids = tf.sparse_tensor_to_dense(sparse)  # Padding with zeroes.
    mask = tf.sparse_to_dense(sparse.indices, sparse.dense_shape,
                              tf.ones_like(sparse.values, dtype=tf.int32))
    return SentenceBatch(ids=ids, mask=mask)

  output_names = ("encode", "decode_pre", "decode_post")
  return tuple(_sparse_to_batch(features[x]) for x in output_names) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:28,代碼來源:input_ops.py

示例10: _count_matrix_input

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import VarLenFeature [as 別名]
def _count_matrix_input(self, filenames, submatrix_rows, submatrix_cols):
    """Creates ops that read submatrix shards from disk."""
    random.shuffle(filenames)
    filename_queue = tf.train.string_input_producer(filenames)
    reader = tf.WholeFileReader()
    _, serialized_example = reader.read(filename_queue)
    features = tf.parse_single_example(
        serialized_example,
        features={
            'global_row': tf.FixedLenFeature([submatrix_rows], dtype=tf.int64),
            'global_col': tf.FixedLenFeature([submatrix_cols], dtype=tf.int64),
            'sparse_local_row': tf.VarLenFeature(dtype=tf.int64),
            'sparse_local_col': tf.VarLenFeature(dtype=tf.int64),
            'sparse_value': tf.VarLenFeature(dtype=tf.float32)
        })

    global_row = features['global_row']
    global_col = features['global_col']

    sparse_local_row = features['sparse_local_row'].values
    sparse_local_col = features['sparse_local_col'].values
    sparse_count = features['sparse_value'].values

    sparse_indices = tf.concat(
        axis=1, values=[tf.expand_dims(sparse_local_row, 1),
                        tf.expand_dims(sparse_local_col, 1)])

    count = tf.sparse_to_dense(sparse_indices, [submatrix_rows, submatrix_cols],
                               sparse_count)

    return global_row, global_col, count 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:33,代碼來源:swivel.py

示例11: example_reading_spec

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import VarLenFeature [as 別名]
def example_reading_spec(self):
    data_fields = {
        "inputs": tf.VarLenFeature(tf.int64),
        "targets": tf.VarLenFeature(tf.int64),
        "floats": tf.VarLenFeature(tf.float32),
    }
    data_items_to_decoders = None
    return (data_fields, data_items_to_decoders) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:10,代碼來源:data_reader_test.py

示例12: example_reading_spec

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import VarLenFeature [as 別名]
def example_reading_spec(self):
    label_key = "image/unpadded_label"
    data_fields, data_items_to_decoders = (
        super(ImageFSNS, self).example_reading_spec())
    data_fields[label_key] = tf.VarLenFeature(tf.int64)
    data_items_to_decoders[
        "targets"] = tf.contrib.slim.tfexample_decoder.Tensor(label_key)
    return data_fields, data_items_to_decoders 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:10,代碼來源:fsns.py

示例13: example_reading_spec

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import VarLenFeature [as 別名]
def example_reading_spec(self):
    data_fields = {"dist_targets": tf.VarLenFeature(tf.int64)}

    if self.has_inputs:
      data_fields["inputs"] = tf.VarLenFeature(tf.int64)

    # hack: ignoring true targets and putting dist_targets in targets
    data_items_to_decoders = {
        "inputs": tf.contrib.slim.tfexample_decoder.Tensor("inputs"),
        "targets": tf.contrib.slim.tfexample_decoder.Tensor("dist_targets"),
    }

    return (data_fields, data_items_to_decoders) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:15,代碼來源:translate.py

示例14: example_reading_spec

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import VarLenFeature [as 別名]
def example_reading_spec(self):
    data_fields = {
        "inputs": tf.VarLenFeature(tf.int64),
        "targets": tf.VarLenFeature(tf.int64),
        "section_boundaries": tf.VarLenFeature(tf.int64),
    }
    data_items_to_decoders = None
    return (data_fields, data_items_to_decoders) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:10,代碼來源:wikisum.py

示例15: example_reading_spec

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import VarLenFeature [as 別名]
def example_reading_spec(self):
    data_fields = {
        "inputs": tf.VarLenFeature(tf.float32),
        "targets": tf.VarLenFeature(tf.float32),
    }
    data_items_to_decoders = None
    return (data_fields, data_items_to_decoders) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:9,代碼來源:timeseries.py


注:本文中的tensorflow.VarLenFeature方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。