當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.TypeSpec方法代碼示例

本文整理匯總了Python中tensorflow.TypeSpec方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.TypeSpec方法的具體用法?Python tensorflow.TypeSpec怎麽用?Python tensorflow.TypeSpec使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.TypeSpec方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TypeSpec [as 別名]
def __init__(self, type_specs: Dict[Text, tf.TypeSpec]):
    """Initializer.

    Args:
      type_specs: a mapping from names of tensors to their TypeSpecs. When
        calling convert(), the dict of tensors passed in must contain the
        same names, and each TensorAlike must be compatible to their TypeSpecs.
    """
    self._handlers = _make_handlers(type_specs)
    all_fields = []
    seen_column_names = set()
    for tensor_name, handler in self._handlers:
      for f in handler.arrow_fields():
        if f.name in seen_column_names:
          raise ValueError("Handler for tensor {} produces a column of a "
                           "conflicting name: {}".format(tensor_name, f.name))
        seen_column_names.add(f.name)
        all_fields.append(f)
    self._arrow_schema = pa.schema(all_fields) 
開發者ID:tensorflow,項目名稱:tfx-bsl,代碼行數:21,代碼來源:tensor_to_arrow.py

示例2: convert

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TypeSpec [as 別名]
def convert(self, tensors: Dict[Text, TensorAlike]) -> pa.RecordBatch:
    """Converts a dict of tensors to a RecordBatch.

    Args:
      tensors: must contain the same keys as the dict passed to the initialier.
        and each TensorAlike must be compatible with the corresponding TypeSpec.

    Returns:
      a RecordBatch, whose schema equals to self.arrow_schema().
    """
    assert len(self._handlers) == len(tensors)
    arrays = []
    for tensor_name, handler in self._handlers:
      arrays.extend(handler.convert(tensors[tensor_name]))

    return pa.record_batch(arrays, schema=self._arrow_schema) 
開發者ID:tensorflow,項目名稱:tfx-bsl,代碼行數:18,代碼來源:tensor_to_arrow.py

示例3: GetTensor

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TypeSpec [as 別名]
def GetTensor(self, record_batch: pa.RecordBatch,
                produce_eager_tensors: bool) -> Any:
    """Converts the RecordBatch to Tensor or CompositeTensor.

    The result must be of the same (not only compatible) TypeSpec as
    self.type_spec.

    Args:
      record_batch: a RecordBatch that is of the same Schema as what was
        passed at initialization time.
      produce_eager_tensors: if True, returns Eager Tensors, otherwise returns
        ndarrays or Tensor value objects.

    Returns:
      A Tensor or a CompositeTensor. Note that their types may vary depending
      on whether the TF eager mode is on.
    """ 
開發者ID:tensorflow,項目名稱:tfx-bsl,代碼行數:19,代碼來源:tensor_adapter.py

示例4: batched_placeholders_from_specs

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TypeSpec [as 別名]
def batched_placeholders_from_specs(specs):
  """Returns placeholders for the given tf.TypeSpecs or feature specs.

  Args:
    specs: a Dict[Text, Union[tf.TypeSpec, FeatureSpec]]. Note that the values
      in this dict must be of the same type. Mixing is not allowed.

  Returns:
    A dictionary from strings to `Tensor` or `SparseTensor`s.

  Raises:
    ValueError: when the TypeSpec or feature spec has an unsupported dtype.
  """
  if not (all([_is_feature_spec(s) for s in six.itervalues(specs)]) or
          all([isinstance(s, tf.TypeSpec) for s in six.itervalues(specs)])):
    raise TypeError('Specs must be all tf.TypeSpecs or feature specs. '
                    'Mixing is not allowed. Got: {}'.format(specs))

  result = {}
  for name, spec in six.iteritems(specs):
    if spec.dtype not in (tf.int64, tf.float32, tf.string):
      raise ValueError('Feature {} ({}, {}) had invalid dtype'
                       .format(name, spec, type(spec)))
    if isinstance(spec, tf.TypeSpec):
      result[name] = _batched_placeholder_from_typespec(name, spec)
    else:
      result[name] = _batched_placeholder_from_feature_spec(name, spec)

  return result


# Older TFX versions may refer to this function instead.
# TODO(b/150721482): remove once TFX 0.21.1 is released. 
開發者ID:tensorflow,項目名稱:transform,代碼行數:35,代碼來源:impl_helper.py

示例5: _batched_placeholder_from_typespec

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TypeSpec [as 別名]
def _batched_placeholder_from_typespec(name, typespec):
  """Creates a batched placeholder from a tf.TypeSpec."""
  scope_name = _sanitize_scope_name(name)
  if isinstance(typespec, tf.TensorSpec):
    return tf.compat.v1.placeholder(
        typespec.dtype, typespec.shape, name=scope_name)
  if isinstance(typespec, tf.SparseTensorSpec):
    return tf.compat.v1.sparse_placeholder(
        typespec.dtype,
        # BUGGY TF
        typespec.shape.as_list(),
        name=scope_name)

  raise ValueError('Unsupported typespec: {}({}) for feature {}'.format(
      typespec, type(typespec), name)) 
開發者ID:tensorflow,項目名稱:transform,代碼行數:17,代碼來源:impl_helper.py

示例6: can_handle

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TypeSpec [as 別名]
def can_handle(type_spec: tf.TypeSpec) -> bool:
    """Returns `True` if the handler can handle the given `tf.TypeSpec`.""" 
開發者ID:tensorflow,項目名稱:tfx-bsl,代碼行數:4,代碼來源:tensor_to_arrow.py

示例7: _get_type_spec

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TypeSpec [as 別名]
def _get_type_spec(tensor_alike: TensorAlike):
  """Returns the TypeSpec of a TensorAlike."""
  if isinstance(tensor_alike, tf.Tensor):
    return tf.TensorSpec.from_tensor(tensor_alike)
  elif isinstance(tensor_alike, composite_tensor.CompositeTensor):
    return tensor_alike._type_spec  # pylint:disable=protected-access
  raise TypeError("Not a Tensor or CompositeTensor: {}".format(
      type(tensor_alike))) 
開發者ID:tensorflow,項目名稱:tfx-bsl,代碼行數:10,代碼來源:tensor_to_arrow.py

示例8: _make_handlers

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TypeSpec [as 別名]
def _make_handlers(
    type_specs: Dict[Text, tf.TypeSpec]) -> List[Tuple[Text, _TypeHandler]]:
  return [
      (tensor_name, _get_handler(tensor_name, type_spec))
      for tensor_name, type_spec in sorted(type_specs.items())
  ] 
開發者ID:tensorflow,項目名稱:tfx-bsl,代碼行數:8,代碼來源:tensor_to_arrow.py

示例9: _get_handler

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TypeSpec [as 別名]
def _get_handler(
    tensor_name: Text, type_spec: tf.TypeSpec) -> _TypeHandler:
  """Returns a TypeHandler that can handle `type_spec`."""
  for handler_cls in _ALL_HANDLERS_CLS:
    if handler_cls.can_handle(type_spec):
      return handler_cls(tensor_name, type_spec)
  raise ValueError(
      "No handler found for tensor {} of spec {}. "
      "Note that tensors with dtype == tf.bool cannot be handled in general -- "
      "consider casting them to tf.uint8."
      .format(tensor_name, type_spec)) 
開發者ID:tensorflow,項目名稱:tfx-bsl,代碼行數:13,代碼來源:tensor_to_arrow.py

示例10: __new__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TypeSpec [as 別名]
def __new__(cls,
              arrow_schema: pa.Schema,
              tensor_representations: TensorRepresentations,
              original_type_specs: Optional[Dict[Text, tf.TypeSpec]] = None):
    return super(TensorAdapterConfig, cls).__new__(
        cls, arrow_schema, tensor_representations, original_type_specs) 
開發者ID:tensorflow,項目名稱:tfx-bsl,代碼行數:8,代碼來源:tensor_adapter.py

示例11: OriginalTypeSpecs

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TypeSpec [as 別名]
def OriginalTypeSpecs(self) -> Dict[Text, tf.TypeSpec]:
    """Returns the origin's type specs.

    A TFXIO 'Y' may be a result of projection of another TFXIO 'X', in which
    case then 'X' is the origin of 'Y'. And this method returns what
    X.TensorAdapter().TypeSpecs() would return.

    May equal to `self.TypeSpecs()`.

    Returns: a mapping from tensor names to `tf.TypeSpec`s.
    """
    return self._original_type_specs 
開發者ID:tensorflow,項目名稱:tfx-bsl,代碼行數:14,代碼來源:tensor_adapter.py

示例12: type_spec

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TypeSpec [as 別名]
def type_spec(self) -> tf.TypeSpec:
    """Returns the TypeSpec of the converted Tensor or CompositeTensor.""" 
開發者ID:tensorflow,項目名稱:tfx-bsl,代碼行數:4,代碼來源:tensor_adapter.py

示例13: output_type_specs

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TypeSpec [as 別名]
def output_type_specs(self) -> Dict[Text, tf.TypeSpec]:
    """Returns the tf.TypeSpecs of the decoded tensors.

    Returns:
      A dict whose keys are the same as keys of the dict returned by
      `decode_record()` and values are the tf.TypeSpec of the corresponding
      (composite) tensor.
    """
    return {
        k: v._type_spec for k, v in  # pylint: disable=protected-access
        self.decode_record.get_concrete_function().structured_outputs.items()
    } 
開發者ID:tensorflow,項目名稱:tfx-bsl,代碼行數:14,代碼來源:tf_graph_record_decoder.py

示例14: _RunInPlaceImpl

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TypeSpec [as 別名]
def _RunInPlaceImpl(
      self, preprocessing_fn: Any,
      metadata: dataset_metadata.DatasetMetadata,
      feature_spec_or_typespecs: Dict[Text, Any],
      transform_output_path: Text) -> _Status:
    """Runs a transformation iteration in-place without looking at the data.

    Args:
      preprocessing_fn: The tf.Transform preprocessing_fn.
      metadata: A DatasetMetadata object for the input data.
      feature_spec_or_typespecs: a Dict[Text, Union[FeatureSpec, tf.TypeSpec]]
      transform_output_path: An absolute path to write the output to.

    Returns:
      Status of the execution.
    """

    absl.logging.debug('Processing an in-place transform')

    raw_metadata_dir = os.path.join(transform_output_path,
                                    tft.TFTransformOutput.RAW_METADATA_DIR)
    metadata_io.write_metadata(metadata, raw_metadata_dir)

    with tf.compat.v1.Graph().as_default() as graph:
      with tf.compat.v1.Session(graph=graph) as sess:

        input_signature = impl_helper.batched_placeholders_from_specs(
            schema_utils.schema_as_feature_spec(
                _GetSchemaProto(metadata)).feature_spec)

        # In order to avoid a bug where import_graph_def fails when the
        # input_map and return_elements of an imported graph are the same
        # (b/34288791), we avoid using the placeholder of an input column as an
        # output of a graph. We do this by applying tf.identity to all inputs of
        # the preprocessing_fn.  Note this applies at the level of raw tensors.
        # TODO(b/34288791): Remove this workaround and use a shallow copy of
        # inputs instead.  A shallow copy is needed in case
        # self._preprocessing_fn mutates its input.
        copied_inputs = impl_helper.copy_tensors(input_signature)

        output_signature = preprocessing_fn(copied_inputs)
        sess.run(tf.compat.v1.global_variables_initializer())
        sess.run(tf.compat.v1.tables_initializer())
        transform_fn_path = os.path.join(transform_output_path,
                                         tft.TFTransformOutput.TRANSFORM_FN_DIR)
        saved_transform_io.write_saved_transform_from_session(
            sess, input_signature, output_signature, transform_fn_path)

        transformed_metadata = dataset_metadata.DatasetMetadata(
            schema=tft.schema_inference.infer_feature_schema(
                output_signature, graph, sess))

    transformed_metadata_dir = os.path.join(
        transform_output_path, tft.TFTransformOutput.TRANSFORMED_METADATA_DIR)
    metadata_io.write_metadata(transformed_metadata, transformed_metadata_dir)

    return _Status.OK() 
開發者ID:tensorflow,項目名稱:tfx,代碼行數:59,代碼來源:executor.py


注:本文中的tensorflow.TypeSpec方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。