當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.Tensors方法代碼示例

本文整理匯總了Python中tensorflow.Tensors方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.Tensors方法的具體用法?Python tensorflow.Tensors怎麽用?Python tensorflow.Tensors使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.Tensors方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: call

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Tensors [as 別名]
def call(self, states, test=False):
        """
        Compute actions and log probability of the selected action

        :return action (tf.Tensors): Tensor of actions
        :return log_probs (tf.Tensor): Tensors of log probabilities of selected actions
        """
        param = self._compute_dist(states)
        if test:
            action = tf.math.argmax(param["prob"], axis=1)  # (size,)
        else:
            action = tf.squeeze(self.dist.sample(param), axis=1)  # (size,)
        log_prob = self.dist.log_likelihood(
            tf.one_hot(indices=action, depth=self.action_dim), param)

        return action, log_prob, param 
開發者ID:keiohta,項目名稱:tf2rl,代碼行數:18,代碼來源:categorical_actor.py

示例2: compute_log_probs

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Tensors [as 別名]
def compute_log_probs(self, states, actions):
        """Compute log probabilities of inputted actions

        :param states (tf.Tensor): Tensors of inputs to NN
        :param actions (tf.Tensor): Tensors of NOT one-hot vector.
            They will be converted to one-hot vector inside this function.
        """
        param = self._compute_dist(states)
        actions = tf.one_hot(
            indices=tf.squeeze(actions),
            depth=self.action_dim)
        param["prob"] = tf.cond(
            tf.math.greater(tf.rank(actions), tf.rank(param["prob"])),
            lambda: tf.expand_dims(param["prob"], axis=0),
            lambda: param["prob"])
        actions = tf.cond(
            tf.math.greater(tf.rank(param["prob"]), tf.rank(actions)),
            lambda: tf.expand_dims(actions, axis=0),
            lambda: actions)
        log_prob = self.dist.log_likelihood(actions, param)
        return log_prob 
開發者ID:keiohta,項目名稱:tf2rl,代碼行數:23,代碼來源:categorical_actor.py

示例3: pad_tensor_dict

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Tensors [as 別名]
def pad_tensor_dict(tensor_dict, max_len):
    """Pad dictionary of tensors with zeros.

    Args:
        tensor_dict (dict[numpy.ndarray]): Tensors to be padded.
        max_len (int): Maximum length.

    Returns:
        dict[numpy.ndarray]: Padded tensor.
    """
    keys = list(tensor_dict.keys())
    ret = dict()
    for k in keys:
        if isinstance(tensor_dict[k], dict):
            ret[k] = pad_tensor_dict(tensor_dict[k], max_len)
        else:
            ret[k] = pad_tensor(tensor_dict[k], max_len)
    return ret 
開發者ID:rlworkgroup,項目名稱:garage,代碼行數:20,代碼來源:tensor_utils.py

示例4: head

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Tensors [as 別名]
def head(cls, inputs, targets, name='head', **kwargs):
        """ The last network layers which produce predictions. Process all output from body.

        Parameters
        ----------
        inputs : list of tf.Tensors
            Input tensors.
        targets : tf.Tensor

        name : str
            Scope name.

        Returns
        -------
        list of tf.Tensors
        """
        res = []
        for i, x in enumerate(inputs):
            res.append(super().head(x, targets, name=name+'-'+str(i), **kwargs))
        return res 
開發者ID:analysiscenter,項目名稱:batchflow,代碼行數:22,代碼來源:unet.py

示例5: _adapt_sym

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Tensors [as 別名]
def _adapt_sym(self, surr_obj, params_var):
        """
        Creates the symbolic representation of the tf policy after one gradient step towards the surr_obj

        Args:
            surr_obj (tf_op) : tensorflow op for task specific (inner) objective
            params_var (dict) : dict of tf.Tensors for current policy params

        Returns:
            (dict):  dict of tf.Tensors for adapted policy params
        """
        # TODO: Fix this if we want to learn the learning rate (it isn't supported right now).
        update_param_keys = list(params_var.keys())

        grads = tf.gradients(surr_obj, [params_var[key] for key in update_param_keys])
        gradients = dict(zip(update_param_keys, grads))

        # gradient descent
        adapted_policy_params = [params_var[key] - tf.multiply(self.step_sizes[key], gradients[key])
                          for key in update_param_keys]

        adapted_policy_params_dict = OrderedDict(zip(update_param_keys, adapted_policy_params))

        return adapted_policy_params_dict 
開發者ID:jonasrothfuss,項目名稱:ProMP,代碼行數:26,代碼來源:base.py

示例6: step

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Tensors [as 別名]
def step(self):
        self.train_loss.reset_states()
        self.train_accuracy.reset_states()
        self.test_loss.reset_states()
        self.test_accuracy.reset_states()

        for idx, (images, labels) in enumerate(self.train_ds):
            if idx > MAX_TRAIN_BATCH:  # This is optional and can be removed.
                break
            self.tf_train_step(images, labels)

        for test_images, test_labels in self.test_ds:
            self.tf_test_step(test_images, test_labels)

        # It is important to return tf.Tensors as numpy objects.
        return {
            "epoch": self.iteration,
            "loss": self.train_loss.result().numpy(),
            "accuracy": self.train_accuracy.result().numpy() * 100,
            "test_loss": self.test_loss.result().numpy(),
            "mean_accuracy": self.test_accuracy.result().numpy() * 100
        } 
開發者ID:ray-project,項目名稱:ray,代碼行數:24,代碼來源:tf_mnist_example.py

示例7: __call__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Tensors [as 別名]
def __call__(self, *parameters, solver_args={}):
        """Solve problem (or a batch of problems) corresponding to `parameters`

        Args:
          parameters: a sequence of tf.Tensors; the n-th Tensor specifies
                      the value for the n-th CVXPY Parameter. These Tensors
                      can be batched: if a Tensor has 3 dimensions, then its
                      first dimension is interpreted as the batch size.
          solver_args: a dict of optional arguments, to send to `diffcp`. Keys
                       should be the names of keyword arguments.

        Returns:
          a list of optimal variable values, one for each CVXPY Variable
          supplied to the constructor.
        """
        if len(parameters) != len(self.params):
            raise ValueError('A tensor must be provided for each CVXPY '
                             'parameter; received %d tensors, expected %d' % (
                                 len(parameters), len(self.params)))
        compute = tf.custom_gradient(
            lambda *parameters: self._compute(parameters, solver_args))
        return compute(*parameters) 
開發者ID:cvxgrp,項目名稱:cvxpylayers,代碼行數:24,代碼來源:cvxpylayer.py

示例8: var_list

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Tensors [as 別名]
def var_list(self, mode=VlMode.RAW):
        """
        Get the chunks that define this variable.

        :param mode: (optional, default VL_MODE.RAW) VL_MODE.RAW: returns simply var_list, that may contain tf.Variables
                         or MergedVariables
                     VL_MODE.BASE: returns a list of tf.Variables that are the "base" variables that for this
                     MergedVariable
                     VL_MODE.TENSOR: returns a list of tf.Variables or tf.Tensor from the MergedVariables
        :return: A list that may contain tf.Tensors, tf.Variables and/or MergedVariables
        """
        if mode == VlMode.RAW:
            return self._var_list
        elif mode == VlMode.BASE:
            return self._get_base_variable_list()
        elif mode == VlMode.TENSOR:
            return self._var_list_as_tensors()  # return w unic tensor + copies augmented
        else:
            raise NotImplementedError('mode %d does not exists' % mode) 
開發者ID:lucfra,項目名稱:RFHO,代碼行數:21,代碼來源:utils.py

示例9: test_python_constants_not_exposed

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Tensors [as 別名]
def test_python_constants_not_exposed(self):
    """Tests that only TensorFlow values are exposed to users."""
    x_fn = lambda: tf.constant(1.0)
    tensorspec = tf.TensorSpec.from_tensor(x_fn())
    encoder_py = gather_encoder.GatherEncoder.from_encoder(
        core_encoder.EncoderComposer(
            test_utils.SimpleLinearEncodingStage(2.0, 3.0)).add_parent(
                test_utils.PlusOneEncodingStage(), P1_VALS).add_parent(
                    test_utils.SimpleLinearEncodingStage(2.0, 3.0),
                    SL_VALS).make(), tensorspec)
    a_var = tf.compat.v1.get_variable('a_var', initializer=2.0)
    b_var = tf.compat.v1.get_variable('b_var', initializer=3.0)
    encoder_tf = gather_encoder.GatherEncoder.from_encoder(
        core_encoder.EncoderComposer(
            test_utils.SimpleLinearEncodingStage(a_var, b_var)).add_parent(
                test_utils.PlusOneEncodingStage(), P1_VALS).add_parent(
                    test_utils.SimpleLinearEncodingStage(a_var, b_var),
                    SL_VALS).make(), tensorspec)

    (encode_params_py, decode_before_sum_params_py,
     decode_after_sum_params_py) = encoder_py.get_params()
    (encode_params_tf, decode_before_sum_params_tf,
     decode_after_sum_params_tf) = encoder_tf.get_params()

    # Params that are Python constants -- not tf.Tensors -- should be hidden
    # from the user, and made statically available at appropriate locations.
    self.assertLen(encode_params_py, 1)
    self.assertLen(encode_params_tf, 5)
    self.assertLen(decode_before_sum_params_py, 1)
    self.assertLen(decode_before_sum_params_tf, 3)
    self.assertEmpty(decode_after_sum_params_py)
    self.assertLen(decode_after_sum_params_tf, 2) 
開發者ID:tensorflow,項目名稱:model-optimization,代碼行數:34,代碼來源:gather_encoder_test.py

示例10: flatten_batch_dict

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Tensors [as 別名]
def flatten_batch_dict(d, name='flatten_batch_dict'):
    """Flatten a batch of observations represented as a dict.

    Args:
        d (dict[tf.Tensor]): A dict of Tensors to flatten.
        name (string): The name of the operation (None by default).

    Returns:
        dict[tf.Tensor]: A dict with flattened tensors.
    """
    with tf.name_scope(name):
        return {k: flatten_batch(v) for k, v in d.items()} 
開發者ID:rlworkgroup,項目名稱:garage,代碼行數:14,代碼來源:tensor_utils.py

示例11: flatten_tensor_variables

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Tensors [as 別名]
def flatten_tensor_variables(ts):
    """Flattens a list of tensors into a single, 1-dimensional tensor.

    Args:
        ts (Iterable): Iterable containing either tf.Tensors or arrays.

    Returns:
        tf.Tensor: Flattened Tensor.
    """
    return tf.concat(axis=0,
                     values=[tf.reshape(x, [-1]) for x in ts],
                     name='flatten_tensor_variables') 
開發者ID:rlworkgroup,項目名稱:garage,代碼行數:14,代碼來源:tensor_utils.py

示例12: pad_tensor

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Tensors [as 別名]
def pad_tensor(x, max_len):
    """Pad tensors with zeros.

    Args:
        x (numpy.ndarray): Tensors to be padded.
        max_len (int): Maximum length.

    Returns:
        numpy.ndarray: Padded tensor.
    """
    return np.concatenate([
        x,
        np.tile(np.zeros_like(x[0]),
                (max_len - len(x), ) + (1, ) * np.ndim(x[0]))
    ]) 
開發者ID:rlworkgroup,項目名稱:garage,代碼行數:17,代碼來源:tensor_utils.py

示例13: pad_tensor_n

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Tensors [as 別名]
def pad_tensor_n(xs, max_len):
    """Pad array of tensors.

    Args:
        xs (numpy.ndarray): Tensors to be padded.
        max_len (int): Maximum length.

    Returns:
        numpy.ndarray: Padded tensor.
    """
    ret = np.zeros((len(xs), max_len) + xs[0].shape[1:], dtype=xs[0].dtype)
    for idx, x in enumerate(xs):
        ret[idx][:len(x)] = x
    return ret 
開發者ID:rlworkgroup,項目名稱:garage,代碼行數:16,代碼來源:tensor_utils.py

示例14: _set_hyper

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Tensors [as 別名]
def _set_hyper(self, name, value):
    """Set hyper `name` to value. value must be numeric."""
    if self._hypers_created:
      if not isinstance(self._hyper[name], tf.Variable):
        raise AttributeError("Can't set attribute: {}".format(name))
      if not isinstance(value, numbers.Number):
        raise ValueError('Dynamic reassignment only supports setting with a '
                         'number. tf.Tensors and tf.Variables can only be used '
                         'before the internal kfac optimizer is created.')
      backend.set_value(self._hyper[name], value)
    else:
      super(Kfac, self)._set_hyper(name, value) 
開發者ID:tensorflow,項目名稱:kfac,代碼行數:14,代碼來源:optimizers.py

示例15: _filter_tensor

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Tensors [as 別名]
def _filter_tensor(inputs, cond, *args):
    """ Create indixes and elements of inputs which consists for which cond is True.

    Parameters
    ----------
        inputs: tf.Tensor
            input tensor
        cond: callable or float
            condition to choose elements. If float, elements which greater the cond will be choosen
        *args: tf.Tensors:
            tensors with the same shape as inputs. Will be returned corresponding elements of them.

    Returns
    -------
        indices: tf.Tensor
            indices of elements of inputs for which cond is True
        tf.Tensors:
            filtred inputs and tensors from args.
    """
    with tf.variable_scope('filter_tensor'):
        if not callable(cond):
            callable_cond = lambda x: x > cond
        else:
            callable_cond = cond
        indices = tf.where(callable_cond(inputs))
        output = (indices, *[tf.gather_nd(x, indices) for x in [inputs, *args]])
    return output 
開發者ID:analysiscenter,項目名稱:batchflow,代碼行數:29,代碼來源:roi.py


注:本文中的tensorflow.Tensors方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。