本文整理匯總了Python中tensorflow.TensorShape方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.TensorShape方法的具體用法?Python tensorflow.TensorShape怎麽用?Python tensorflow.TensorShape使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.TensorShape方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: main
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TensorShape [as 別名]
def main():
dataset = tf.data.Dataset.from_generator(gen, (tf.int32, tf.int32),
(tf.TensorShape([BATCH_SIZE]),
tf.TensorShape([BATCH_SIZE, 1])))
optimizer = tf.compat.v1.train.GradientDescentOptimizer(LEARNING_RATE)
model = Word2Vec(vocab_size=VOCAB_SIZE, embed_size=EMBED_SIZE)
grad_fn = tfe.implicit_value_and_gradients(model.compute_loss)
total_loss = 0.0
num_train_steps = 0
while num_train_steps < NUM_TRAIN_STEPS:
for center_words, target_words in tfe.Iterator(dataset):
if num_train_steps >= NUM_TRAIN_STEPS:
break
loss_batch, grads = grad_fn(center_words, target_words)
total_loss += loss_batch
optimizer.apply_gradients(grads)
if (num_train_steps + 1) % SKIP_STEP == 0:
print('Average loss at step {}: {:5.1f}'.format(
num_train_steps, total_loss / SKIP_STEP
))
total_loss = 0.0
num_train_steps += 1
示例2: reshape_by_blocks
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TensorShape [as 別名]
def reshape_by_blocks(x, x_shape, memory_block_size):
"""Reshapes input by splitting its length over blocks of memory_block_size.
Args:
x: a Tensor with shape [batch, heads, length, depth]
x_shape: tf.TensorShape of x.
memory_block_size: Integer which divides length.
Returns:
Tensor with shape
[batch, heads, length // memory_block_size, memory_block_size, depth].
"""
x = tf.reshape(x, [
x_shape[0], x_shape[1], x_shape[2] // memory_block_size,
memory_block_size, x_shape[3]
])
return x
示例3: nn_distance
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TensorShape [as 別名]
def nn_distance(xyz1,xyz2):
'''
Computes the distance of nearest neighbors for a pair of point clouds
input: xyz1: (batch_size,#points_1,3) the first point cloud
input: xyz2: (batch_size,#points_2,3) the second point cloud
output: dist1: (batch_size,#point_1) distance from first to second
output: idx1: (batch_size,#point_1) nearest neighbor from first to second
output: dist2: (batch_size,#point_2) distance from second to first
output: idx2: (batch_size,#point_2) nearest neighbor from second to first
'''
return nn_distance_module.nn_distance(xyz1,xyz2)
#@tf.RegisterShape('NnDistance')
#def _nn_distance_shape(op):
#shape1=op.inputs[0].get_shape().with_rank(3)
#shape2=op.inputs[1].get_shape().with_rank(3)
#return [tf.TensorShape([shape1.dims[0],shape1.dims[1]]),tf.TensorShape([shape1.dims[0],shape1.dims[1]]),
#tf.TensorShape([shape2.dims[0],shape2.dims[1]]),tf.TensorShape([shape2.dims[0],shape2.dims[1]])]
示例4: _assert_same_size
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TensorShape [as 別名]
def _assert_same_size(outputs, output_size):
"""Check if outputs match output_size
Args:
outputs: A Tensor or a (nested) tuple of tensors
output_size: Can be an Integer, a TensorShape, or a (nested) tuple of
Integers or TensorShape.
"""
nest.assert_same_structure(outputs, output_size)
flat_output_size = nest.flatten(output_size)
flat_output = nest.flatten(outputs)
for (output, size) in zip(flat_output, flat_output_size):
if output[0].shape != tf.TensorShape(size):
raise ValueError(
"The output size does not match the the required output_size")
示例5: _compute_concat_output_shape
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TensorShape [as 別名]
def _compute_concat_output_shape(input_shape, axis):
"""Infers the output shape of concat given the input shape.
The code is adapted from the ConcatLayer of lasagne
(https://github.com/Lasagne/Lasagne/blob/master/lasagne/layers/merge.py)
Args:
input_shape (list): A list of shapes, each of which is in turn a
list or TensorShape.
axis (int): Axis of the concat operation.
Returns:
list: Output shape of concat.
"""
# The size of each axis of the output shape equals the first
# input size of respective axis that is not `None`
input_shape = [tf.TensorShape(s).as_list() for s in input_shape]
output_shape = [next((s for s in sizes if s is not None), None)
for sizes in zip(*input_shape)]
axis_sizes = [s[axis] for s in input_shape]
concat_axis_size = None if any(s is None for s in axis_sizes) \
else sum(axis_sizes)
output_shape[axis] = concat_axis_size
return output_shape
示例6: _make_shapes_consistent
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TensorShape [as 別名]
def _make_shapes_consistent(output, labels):
"""Try to make inputs have the same shape by adding dimensions of size 1."""
shape1 = output.shape
shape2 = labels.shape
len1 = len(shape1)
len2 = len(shape2)
if len1 == len2:
return (output, labels)
if isinstance(shape1, tf.TensorShape):
shape1 = tuple(shape1.as_list())
if isinstance(shape2, tf.TensorShape):
shape2 = tuple(shape2.as_list())
if len1 > len2 and all(i == 1 for i in shape1[len2:]):
for i in range(len1 - len2):
labels = tf.expand_dims(labels, -1)
return (output, labels)
if len2 > len1 and all(i == 1 for i in shape2[len1:]):
for i in range(len2 - len1):
output = tf.expand_dims(output, -1)
return (output, labels)
raise ValueError("Incompatible shapes for outputs and labels: %s versus %s" %
(str(shape1), str(shape2)))
示例7: __init__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TensorShape [as 別名]
def __init__(self,
dtype,
batch_shape=None,
value_shape=None,
group_ndims=0,
is_continuous=None,
**kwargs):
dtype = tf.float32 if dtype is None else tf.as_dtype(dtype).base_dtype
self.explicit_batch_shape = tf.TensorShape(batch_shape)
self.explicit_value_shape = tf.TensorShape(value_shape)
if is_continuous is None:
is_continuous = dtype.is_floating
super(Empirical, self).__init__(
dtype=dtype,
param_dtype=None,
is_continuous=is_continuous,
is_reparameterized=False,
use_path_derivative=False,
group_ndims=group_ndims,
**kwargs)
示例8: _sample
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TensorShape [as 別名]
def _sample(self, n_samples):
if self.n_experiments is None:
raise ValueError('Cannot sample when `n_experiments` is None')
if self.logits.get_shape().ndims == 2:
logits_flat = self.logits
else:
logits_flat = tf.reshape(self.logits, [-1, self.n_categories])
samples_flat = tf.transpose(
tf.random.categorical(logits_flat, n_samples * self.n_experiments))
shape = tf.concat([[n_samples, self.n_experiments],
self.batch_shape], 0)
samples = tf.reshape(samples_flat, shape)
static_n_samples = n_samples if isinstance(n_samples,
int) else None
static_n_exps = self.n_experiments \
if isinstance(self.n_experiments, int) else None
samples.set_shape(
tf.TensorShape([static_n_samples, static_n_exps]).
concatenate(self.get_batch_shape()))
samples = tf.reduce_sum(
tf.one_hot(samples, self.n_categories, dtype=self.dtype),
axis=1)
return samples
示例9: main
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TensorShape [as 別名]
def main():
dataset = tf.data.Dataset.from_generator(gen,
(tf.int32, tf.int32),
(tf.TensorShape([BATCH_SIZE]), tf.TensorShape([BATCH_SIZE, 1])))
word2vec(dataset)
示例10: main
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TensorShape [as 別名]
def main():
dataset = tf.data.Dataset.from_generator(gen,
(tf.int32, tf.int32),
(tf.TensorShape([BATCH_SIZE]), tf.TensorShape([BATCH_SIZE, 1])))
model = SkipGramModel(dataset, VOCAB_SIZE, EMBED_SIZE, BATCH_SIZE, NUM_SAMPLED, LEARNING_RATE)
model.build_graph()
model.train(NUM_TRAIN_STEPS)
model.visualize(VISUAL_FLD, NUM_VISUALIZE)
示例11: test_net_slice_char_logits_with_correct_shape
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TensorShape [as 別名]
def test_net_slice_char_logits_with_correct_shape(self):
batch_size = 2
seq_length = 4
num_char_classes = 3
layer = create_layer(sequence_layers.NetSlice, batch_size, seq_length,
num_char_classes)
char_logits = layer.create_logits()
self.assertEqual(
tf.TensorShape([batch_size, seq_length, num_char_classes]),
char_logits.get_shape())
示例12: test_net_slice_with_autoregression_char_logits_with_correct_shape
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TensorShape [as 別名]
def test_net_slice_with_autoregression_char_logits_with_correct_shape(self):
batch_size = 2
seq_length = 4
num_char_classes = 3
layer = create_layer(sequence_layers.NetSliceWithAutoregression,
batch_size, seq_length, num_char_classes)
char_logits = layer.create_logits()
self.assertEqual(
tf.TensorShape([batch_size, seq_length, num_char_classes]),
char_logits.get_shape())
示例13: test_attention_char_logits_with_correct_shape
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TensorShape [as 別名]
def test_attention_char_logits_with_correct_shape(self):
batch_size = 2
seq_length = 4
num_char_classes = 3
layer = create_layer(sequence_layers.Attention, batch_size, seq_length,
num_char_classes)
char_logits = layer.create_logits()
self.assertEqual(
tf.TensorShape([batch_size, seq_length, num_char_classes]),
char_logits.get_shape())
示例14: test_attention_with_autoregression_char_logits_with_correct_shape
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TensorShape [as 別名]
def test_attention_with_autoregression_char_logits_with_correct_shape(self):
batch_size = 2
seq_length = 4
num_char_classes = 3
layer = create_layer(sequence_layers.AttentionWithAutoregression,
batch_size, seq_length, num_char_classes)
char_logits = layer.create_logits()
self.assertEqual(
tf.TensorShape([batch_size, seq_length, num_char_classes]),
char_logits.get_shape())
示例15: testParsingReaderOpWhileLoop
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TensorShape [as 別名]
def testParsingReaderOpWhileLoop(self):
feature_size = 3
batch_size = 5
def ParserEndpoints():
return gen_parser_ops.gold_parse_reader(self._task_context,
feature_size,
batch_size,
corpus_name='training-corpus')
with self.test_session() as sess:
# The 'condition' and 'body' functions expect as many arguments as there
# are loop variables. 'condition' depends on the 'epoch' loop variable
# only, so we disregard the remaining unused function arguments. 'body'
# returns a list of updated loop variables.
def Condition(epoch, *unused_args):
return tf.less(epoch, 2)
def Body(epoch, num_actions, *feature_args):
# By adding one of the outputs of the reader op ('epoch') as a control
# dependency to the reader op we force the repeated evaluation of the
# reader op.
with epoch.graph.control_dependencies([epoch]):
features, epoch, gold_actions = ParserEndpoints()
num_actions = tf.maximum(num_actions,
tf.reduce_max(gold_actions, [0], False) + 1)
feature_ids = []
for i in range(len(feature_args)):
feature_ids.append(features[i])
return [epoch, num_actions] + feature_ids
epoch = ParserEndpoints()[-2]
num_actions = tf.constant(0)
loop_vars = [epoch, num_actions]
res = sess.run(
tf.while_loop(Condition, Body, loop_vars,
shape_invariants=[tf.TensorShape(None)] * 2,
parallel_iterations=1))
logging.info('Result: %s', res)
self.assertEqual(res[0], 2)