當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.TensorArray方法代碼示例

本文整理匯總了Python中tensorflow.TensorArray方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.TensorArray方法的具體用法?Python tensorflow.TensorArray怎麽用?Python tensorflow.TensorArray使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.TensorArray方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: testConvertNetworkStateTensorarray

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TensorArray [as 別名]
def testConvertNetworkStateTensorarray(self):
    with self.test_session() as session:
      ta = tf.TensorArray(
          dtype=tf.float32,
          size=0,
          dynamic_size=True,
          clear_after_read=False,
          infer_shape=False)
      # Create a 3-step x 2-stride x 2-feature-dim source array.
      ta = ta.write(0, [[0., 0.]] * 2)  # The zeroth step will be removed.
      ta = ta.write(1, [[1., 10.]] * 2)
      ta = ta.write(2, [[2., 20.]] * 2)
      ta = ta.write(3, [[3., 30.]] * 2)
      tensor = network_units.convert_network_state_tensorarray(ta)
      actual = session.run(tensor)
      self.assertEqual(actual.shape, (6, 2))

      # The arrangement of the values is expected to be stride * steps.
      expected = [[1., 10.], [2., 20.], [3., 30.], [1., 10.], [2., 20.],
                  [3., 30.]]
      self.assertAllEqual(actual, expected) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:23,代碼來源:network_units_test.py

示例2: _check_static_batch_beam_maybe

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TensorArray [as 別名]
def _check_static_batch_beam_maybe(shape, batch_size, beam_width):
    """Raises an exception if dimensions are known statically and can not be
    reshaped to [batch_size, beam_size, -1]."""
    reshaped_shape = tf.TensorShape([batch_size, beam_width, None])
    assert len(shape.dims) > 0
    if batch_size is None or shape[0] is None:
        return True  # not statically known => no check
    if shape[0] == batch_size * beam_width:
        return True  # flattened, matching
    has_second_dim = shape.ndims >= 2 and shape[1] is not None
    if has_second_dim and shape[0] == batch_size and shape[1] == beam_width:
        return True  # non-flattened, matching
    # Otherwise we could not find a match and warn:
    tf.get_logger().warn(
        "TensorArray reordering expects elements to be "
        "reshapable to %s which is incompatible with the "
        "current shape %s. Consider setting "
        "reorder_tensor_arrays to False to disable TensorArray "
        "reordering during the beam search." % (reshaped_shape, shape)
    )
    return False 
開發者ID:tensorflow,項目名稱:addons,代碼行數:23,代碼來源:beam_search_decoder.py

示例3: _maybe_merge_batch_beams

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TensorArray [as 別名]
def _maybe_merge_batch_beams(self, t, s):
        """Splits the tensor from a batch by beams into a batch of beams.

        More exactly, `t` is a tensor of dimension
        `[batch_size * beam_width] + s`, then we reshape it to
        `[batch_size, beam_width] + s`.

        Args:
          t: `Tensor` of dimension `[batch_size * beam_width] + s`.
          s: `Tensor`, Python int, or `TensorShape`.

        Returns:
          A reshaped version of t with shape `[batch_size, beam_width] + s`.

        Raises:
          ValueError:  If the rank of `t` is not statically known.
        """
        if isinstance(t, tf.TensorArray):
            return t
        _check_ndims(t)
        if t.shape.ndims >= 2:
            return self._merge_batch_beams(t, s)
        else:
            return t 
開發者ID:tensorflow,項目名稱:addons,代碼行數:26,代碼來源:beam_search_decoder.py

示例4: mix_target_sequence

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TensorArray [as 別名]
def mix_target_sequence(self, gold_token, predicted_token, training, top_k=5):
        """ to mix gold token and prediction
        param gold_token: true labels
        param predicted_token: predictions by first pass
        return: mix of the gold_token and predicted_token
        """
        mix_result = tf.TensorArray(
            tf.float32, size=1, dynamic_size=True, clear_after_read=False
        )
        for i in tf.range(tf.shape(gold_token)[-1]):
            if self.random_num([1]) > self.hparams.schedual_sampling_rate:# do schedual sampling
                selected_input = predicted_token[:, i, :]
                selected_idx = tf.nn.top_k(selected_input, top_k).indices
                embedding_input = self.y_net.layers[1](selected_idx, training=training)
                embedding_input = tf.reduce_mean(embedding_input, axis=1)
                mix_result = mix_result.write(i, embedding_input)
            else:
                selected_input = tf.reshape(gold_token[:, i], [-1, 1])
                embedding_input = self.y_net.layers[1](selected_input, training=training)
                mix_result = mix_result.write(i, embedding_input[:, 0, :])
        final_input = self.y_net.layers[2](tf.transpose(mix_result.stack(), [1, 0, 2]),
                                           training=training)
        final_input = self.y_net.layers[3](final_input, training=training)
        return final_input 
開發者ID:athena-team,項目名稱:athena,代碼行數:26,代碼來源:speech_transformer.py

示例5: tas_for_tensors

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TensorArray [as 別名]
def tas_for_tensors(tensors, length):
  """Unstacks a set of Tensors into TensorArrays.

  Args:
    tensors: A potentially nested tuple or list of Tensors with length in the
      first dimension greater than or equal to the 'length' input argument.
    length: The desired length of the TensorArrays.
  Returns:
    tensorarrays: A potentially nested tuple or list of TensorArrays with the
      same structure as 'tensors'. Contains the result of unstacking each Tensor
      in 'tensors'.
  """
  def map_fn(x):
    ta = tf.TensorArray(x.dtype, length, name=x.name.split(':')[0] + '_ta')
    return ta.unstack(x[:length, :])
  return map_nested(map_fn, tensors) 
開發者ID:rky0930,項目名稱:yolo_v2,代碼行數:18,代碼來源:nested_utils.py

示例6: extend_prefixes

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TensorArray [as 別名]
def extend_prefixes(prefixes_to_extend, possible_prefix_extensions):
  """Extends prefixes in `prefixes_to_extend` by `possible_prefix_extensions`.

  Args:
    prefixes_to_extend: A 1D tf.string containing prefixes to be extended.
    possible_prefix_extensions: A 1D tf.string containing all possible prefix
      extensions.

  Returns:
    A 1D tf.string containing all the extended prefixes.
  """
  num_new_prefixes = tf.shape(prefixes_to_extend)[0] * tf.shape(
      possible_prefix_extensions)[0]
  extended_prefixes = tf.TensorArray(dtype=tf.string, size=num_new_prefixes)
  position = tf.constant(0, dtype=tf.int32)
  for prefix in prefixes_to_extend:
    for possible_extension in possible_prefix_extensions:
      # [-1] is passed to tf.reshape to flatten the extended prefix. This is
      # important to ensure consistency of shapes.
      extended_prefix = tf.reshape(
          tf.strings.reduce_join([prefix, possible_extension]), [-1])
      extended_prefixes = extended_prefixes.write(position, extended_prefix)
      position += 1
  return extended_prefixes.concat() 
開發者ID:tensorflow,項目名稱:federated,代碼行數:26,代碼來源:triehh_tf.py

示例7: call

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TensorArray [as 別名]
def call(self, inputs):
        x, seq_length = inputs

        x_list = tf.TensorArray(dtype=tf.float32, size=seq_length)
        x_list = x_list.unstack(tf.transpose(x, perm=[1, 0, 2]))
        state = self.cell.get_initial_state(batch_size=self.batch_size, dtype=tf.float32)
        for t in range(seq_length):
            output, state = self.cell(tf.concat([x_list.read(t), tf.zeros([self.batch_size, 1])], axis=1), state)

        output, state = self.cell(self.eof, state)

        output_list = tf.TensorArray(dtype=tf.float32, size=seq_length)
        for t in range(seq_length):
            output, state = self.cell(self.zero, state)
            output_list = output_list.write(t, output[:, 0:self.vector_dim])
        y_pred = tf.sigmoid(tf.transpose(output_list.stack(), perm=[1, 0, 2]))

        return y_pred 
開發者ID:snowkylin,項目名稱:ntm,代碼行數:20,代碼來源:model_v2.py

示例8: _maybe_split_batch_beams

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TensorArray [as 別名]
def _maybe_split_batch_beams(self, t, s):
    """Maybe splits the tensor from a batch by beams into a batch of beams.

    We do this so that we can use nest and not run into problems with shapes.

    Args:
      t: `Tensor`, either scalar or shaped `[batch_size * beam_width] + s`.
      s: `Tensor`, Python int, or `TensorShape`.

    Returns:
      If `t` is a matrix or higher order tensor, then the return value is
      `t` reshaped to `[batch_size, beam_width] + s`.  Otherwise `t` is
      returned unchanged.

    Raises:
      ValueError: If the rank of `t` is not statically known.
    """
    if isinstance(t, tf.TensorArray):
      return t
    _check_maybe(t)
    if t.shape.ndims >= 1:
      return self._split_batch_beams(t, s)
    else:
      return t 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:26,代碼來源:beam_search_decoder.py

示例9: _maybe_merge_batch_beams

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TensorArray [as 別名]
def _maybe_merge_batch_beams(self, t, s):
    """Splits the tensor from a batch by beams into a batch of beams.

    More exactly, `t` is a tensor of dimension `[batch_size * beam_width] + s`,
    then we reshape it to `[batch_size, beam_width] + s`.

    Args:
      t: `Tensor` of dimension `[batch_size * beam_width] + s`.
      s: `Tensor`, Python int, or `TensorShape`.

    Returns:
      A reshaped version of t with shape `[batch_size, beam_width] + s`.

    Raises:
      ValueError:  If the rank of `t` is not statically known.
    """
    if isinstance(t, tf.TensorArray):
      return t
    _check_maybe(t)
    if t.shape.ndims >= 2:
      return self._merge_batch_beams(t, s)
    else:
      return t 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:25,代碼來源:beam_search_decoder.py

示例10: _check_batch_beam

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TensorArray [as 別名]
def _check_batch_beam(t, batch_size, beam_width):
  """Returns an Assert operation checking that the elements of the stacked
  TensorArray can be reshaped to [batch_size, beam_size, -1]. At this point,
  the TensorArray elements have a known rank of at least 1.
  """
  error_message = ("TensorArray reordering expects elements to be "
                   "reshapable to [batch_size, beam_size, -1] which is "
                   "incompatible with the dynamic shape of %s elements. "
                   "Consider setting reorder_tensor_arrays to False to disable "
                   "TensorArray reordering during the beam search."
                   % (t.name))
  rank = t.shape.ndims
  shape = tf.shape(t)
  if rank == 2:
    condition = tf.equal(shape[1], batch_size * beam_width)
  else:
    condition = tf.logical_or(
        tf.equal(shape[1], batch_size * beam_width),
        tf.logical_and(
            tf.equal(shape[1], batch_size),
            tf.equal(shape[2], beam_width)))
  return tf.Assert(condition, [error_message]) 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:24,代碼來源:beam_search_decoder.py

示例11: _check_static_batch_beam_maybe

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TensorArray [as 別名]
def _check_static_batch_beam_maybe(shape, batch_size, beam_width):
  """Raises an exception if dimensions are known statically and can not be
  reshaped to [batch_size, beam_size, -1].
  """
  reshaped_shape = tf.TensorShape([batch_size, beam_width, None])
  if (batch_size is not None and shape[0].value is not None
      and (shape[0] != batch_size * beam_width
           or (shape.ndims >= 2 and shape[1].value is not None
               and (shape[0] != batch_size or shape[1] != beam_width)))):
    tf.logging.warn("TensorArray reordering expects elements to be "
                    "reshapable to %s which is incompatible with the "
                    "current shape %s. Consider setting "
                    "reorder_tensor_arrays to False to disable TensorArray "
                    "reordering during the beam search."
                    % (reshaped_shape, shape))
    return False
  return True 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:19,代碼來源:beam_search_decoder.py

示例12: non_max_suppression

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TensorArray [as 別名]
def non_max_suppression(inputs, scores, batch_size, max_output_size,
                        score_threshold=0.7, iou_threshold=0.7, nonempty=False, name='nms'):
    """ Perform NMS on batch of images. """
    with tf.variable_scope(name):
        ix = tf.constant(0)
        filtered_rois = tf.TensorArray(dtype=tf.int32, size=batch_size, infer_shape=False)
        loop_cond = lambda ix, filtered_rois: tf.less(ix, batch_size)
        def _loop_body(ix, filtered_rois):
            indices, score, roi = _filter_tensor(scores[ix], score_threshold, inputs[ix]) # pylint: disable=unbalanced-tuple-unpacking
            roi_corners = tf.concat([roi[:, :2], roi[:, :2]+roi[:, 2:]], axis=-1)
            roi_after_nms = tf.image.non_max_suppression(roi_corners, score, max_output_size, iou_threshold)
            if nonempty:
                is_not_empty = lambda: filtered_rois.write(ix,
                                                           tf.cast(tf.gather(indices, roi_after_nms),
                                                                   dtype=tf.int32))
                is_empty = lambda: filtered_rois.write(ix, tf.constant([[0]]))
                filtered_rois = tf.cond(tf.not_equal(tf.shape(indices)[0], 0), is_not_empty, is_empty)
            else:
                filtered_rois = filtered_rois.write(ix, tf.cast(tf.gather(indices, roi_after_nms), dtype=tf.int32))
            return [ix+1, filtered_rois]
        _, res = tf.while_loop(loop_cond, _loop_body, [ix, filtered_rois])
        res = _array_to_tuple(res, batch_size, [-1, 1])
    return res 
開發者ID:analysiscenter,項目名稱:batchflow,代碼行數:25,代碼來源:roi.py

示例13: _compute_gradients

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TensorArray [as 別名]
def _compute_gradients(self, loss_fn, x, unused_optim_state):
        """Compute gradient estimates using SPSA."""
        # Assumes `x` is a list, containing a [1, H, W, C] image
        assert len(x) == 1 and x[0].get_shape().as_list()[0] == 1
        x = x[0]
        x_shape = x.get_shape().as_list()

        def body(i, grad_array):
            delta = self._delta
            delta_x = self._get_delta(x, delta)
            delta_x = tf.concat([delta_x, -delta_x], axis=0)
            loss_vals = tf.reshape(
                loss_fn(x + delta_x),
                [2 * self._num_samples] + [1] * (len(x_shape) - 1))
            avg_grad = reduce_mean(loss_vals * delta_x, axis=0) / delta
            avg_grad = tf.expand_dims(avg_grad, axis=0)
            new_grad_array = grad_array.write(i, avg_grad)
            return i + 1, new_grad_array

        def cond(i, _):
            return i < self._num_iters

        _, all_grads = tf.while_loop(
            cond,
            body,
            loop_vars=[
                0, tf.TensorArray(size=self._num_iters, dtype=tf_dtype)
            ],
            back_prop=False,
            parallel_iterations=1)
        avg_grad = reduce_sum(all_grads.stack(), axis=0)
        return [avg_grad] 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:34,代碼來源:attacks_tf.py

示例14: transform_targets_for_output

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TensorArray [as 別名]
def transform_targets_for_output(y_true, grid_y, grid_x, anchor_idxs, classes):
    # y_true: (N, boxes, (x1, y1, x2, y2, class, best_anchor))
    N = tf.shape(y_true)[0]

    # y_true_out: (N, grid, grid, anchors, [x, y, w, h, obj, class])
    y_true_out = tf.zeros((N, grid_y, grid_x, tf.shape(anchor_idxs)[0], 6))

    anchor_idxs = tf.cast(anchor_idxs, tf.int32)

    indexes = tf.TensorArray(tf.int32, 1, dynamic_size=True)
    updates = tf.TensorArray(tf.float32, 1, dynamic_size=True)
    idx = 0
    for i in tf.range(N):
        for j in tf.range(tf.shape(y_true)[1]):
            if tf.equal(y_true[i][j][2], 0):
                continue
            anchor_eq = tf.equal(anchor_idxs, tf.cast(y_true[i][j][5], tf.int32))

            if tf.reduce_any(anchor_eq):
                box = y_true[i][j][0:4]
                box_xy = (y_true[i][j][0:2] + y_true[i][j][2:4]) / 2.

                anchor_idx = tf.cast(tf.where(anchor_eq), tf.int32)
                grid_size = tf.cast(tf.stack([grid_x, grid_y], axis=-1), tf.float32)
                grid_xy = tf.cast(box_xy * grid_size, tf.int32)
                # grid[y][x][anchor] = (tx, ty, bw, bh, obj, class)
                indexes = indexes.write(idx, [i, grid_xy[1], grid_xy[0], anchor_idx[0][0]])
                updates = updates.write(idx, [box[0], box[1], box[2], box[3], 1, y_true[i][j][4]])
                idx += 1

    y_ture_out = tf.tensor_scatter_nd_update(y_true_out, indexes.stack(), updates.stack())
    return y_ture_out 
開發者ID:akkaze,項目名稱:tf2-yolo3,代碼行數:34,代碼來源:dataset.py

示例15: _compute_states

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TensorArray [as 別名]
def _compute_states(self):
    """ Compute hidden states.

    Returns:
      A tuple, (outputs, states).
    """

    _inputs = tf.transpose(self.inputs, [1, 0, 2])
    x_ta = tf.TensorArray(tf.float32, size=self.length).unstack(_inputs)
    h_ta = tf.TensorArray(tf.float32, size=self.length)

    def cond(t, h, h_ta):
      return tf.less(t, self.length)

    def body(t, h, h_ta):

      x = x_ta.read(t)
      num_units, input_size = self.num_hidden_units, self.input_size

      with tf.variable_scope('simple_rnn'):
        h_new = self.activation(self._linear(h, x, num_units, scope='simple_rnn'))

      h_ta_new = h_ta.write(t, h_new)
      return t + 1, h_new, h_ta_new

    t = tf.constant(0)
    h = tf.squeeze(self.initial_states, [1])
    _, _, h_ta = tf.while_loop(cond, body, [t, h, h_ta])

    states = tf.transpose(h_ta.stack(), [1, 0, 2], name='states')
    outputs = tf.identity(states, name='outputs')
    return outputs, states 
開發者ID:rdipietro,項目名稱:mist-rnns,代碼行數:34,代碼來源:layers.py


注:本文中的tensorflow.TensorArray方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。