本文整理匯總了Python中tensorflow.Tensor方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.Tensor方法的具體用法?Python tensorflow.Tensor怎麽用?Python tensorflow.Tensor使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.Tensor方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _clip_gradients
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Tensor [as 別名]
def _clip_gradients(self, grad):
"""Clips gradients if the hyperparameter `gradient_clip_norm` requires it.
Sparse tensors, in the form of IndexedSlices returned for the
gradients of embeddings, require special handling.
Args:
grad: Gradient Tensor, IndexedSlices, or None.
Returns:
Optionally clipped gradient.
"""
if grad is not None and self.hyperparams.gradient_clip_norm > 0:
logging.info('Clipping gradient %s', grad)
if isinstance(grad, tf.IndexedSlices):
tmp = tf.clip_by_norm(grad.values, self.hyperparams.gradient_clip_norm)
return tf.IndexedSlices(tmp, grad.indices, grad.dense_shape)
else:
return tf.clip_by_norm(grad, self.hyperparams.gradient_clip_norm)
else:
return grad
示例2: dropout
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Tensor [as 別名]
def dropout(input_tensor, dropout_prob):
"""Perform dropout.
Args:
input_tensor: float Tensor.
dropout_prob: Python float. The probability of dropping out a value (NOT of
*keeping* a dimension as in `tf.nn.dropout`).
Returns:
A version of `input_tensor` with dropout applied.
"""
if dropout_prob is None or dropout_prob == 0.0:
return input_tensor
output = tf.nn.dropout(input_tensor, 1.0 - dropout_prob)
return output
示例3: _create_learning_rate
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Tensor [as 別名]
def _create_learning_rate(hyperparams, step_var):
"""Creates learning rate var, with decay and switching for CompositeOptimizer.
Args:
hyperparams: a GridPoint proto containing optimizer spec, particularly
learning_method to determine optimizer class to use.
step_var: tf.Variable, global training step.
Returns:
a scalar `Tensor`, the learning rate based on current step and hyperparams.
"""
if hyperparams.learning_method != 'composite':
base_rate = hyperparams.learning_rate
else:
spec = hyperparams.composite_optimizer_spec
switch = tf.less(step_var, spec.switch_after_steps)
base_rate = tf.cond(switch, lambda: tf.constant(spec.method1.learning_rate),
lambda: tf.constant(spec.method2.learning_rate))
return tf.train.exponential_decay(
base_rate,
step_var,
hyperparams.decay_steps,
hyperparams.decay_base,
staircase=hyperparams.decay_staircase)
示例4: testBuildManualStepLearningRate
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Tensor [as 別名]
def testBuildManualStepLearningRate(self):
learning_rate_text_proto = """
manual_step_learning_rate {
schedule {
step: 0
learning_rate: 0.006
}
schedule {
step: 90000
learning_rate: 0.00006
}
}
"""
global_summaries = set([])
learning_rate_proto = optimizer_pb2.LearningRate()
text_format.Merge(learning_rate_text_proto, learning_rate_proto)
learning_rate = optimizer_builder._create_learning_rate(
learning_rate_proto, global_summaries)
self.assertTrue(isinstance(learning_rate, tf.Tensor))
示例5: compute_exponential_averages
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Tensor [as 別名]
def compute_exponential_averages(variables, decay):
"""Given a list of tensorflow scalar variables
create ops corresponding to their exponential
averages
Parameters
----------
variables: [tf.Tensor]
List of scalar tensors.
Returns
-------
averages: [tf.Tensor]
List of scalar tensors corresponding to averages
of al the `variables` (in order)
apply_op: tf.runnable
Op to be run to update the averages with current value
of variables.
"""
averager = tf.train.ExponentialMovingAverage(decay=decay)
apply_op = averager.apply(variables)
return [averager.average(v) for v in variables], apply_op
示例6: _normal_distribution_cdf
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Tensor [as 別名]
def _normal_distribution_cdf(x, stddev):
"""Evaluates the CDF of the normal distribution.
Normal distribution with mean 0 and standard deviation stddev,
evaluated at x=x.
input and output `Tensor`s have matching shapes.
Args:
x: a `Tensor`
stddev: a `Tensor` with the same shape as `x`.
Returns:
a `Tensor` with the same shape as `x`.
"""
return 0.5 * (1.0 + tf.erf(x / (math.sqrt(2) * stddev + 1e-20)))
示例7: cv_squared
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Tensor [as 別名]
def cv_squared(x):
"""The squared coefficient of variation of a sample.
Useful as a loss to encourage a positive distribution to be more uniform.
Epsilons added for numerical stability.
Returns 0 for an empty Tensor.
Args:
x: a `Tensor`.
Returns:
a `Scalar`.
"""
epsilon = 1e-10
float_size = tf.to_float(tf.size(x)) + epsilon
mean = tf.reduce_sum(x) / float_size
variance = tf.reduce_sum(tf.square(x - mean)) / float_size
return variance / (tf.square(mean) + epsilon)
示例8: __init__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Tensor [as 別名]
def __init__(self, pad_mask):
"""Compute and store the location of the padding.
Args:
pad_mask (tf.Tensor): Reference padding tensor of shape
[batch_size,length] or [dim_origin] (dim_origin=batch_size*length)
containing non-zeros positive values to indicate padding location.
"""
self.nonpad_ids = None
self.dim_origin = None
with tf.name_scope("pad_reduce/get_ids"):
pad_mask = tf.reshape(pad_mask, [-1]) # Flatten the batch
# nonpad_ids contains coordinates of zeros rows (as pad_mask is
# float32, checking zero equality is done with |x| < epsilon, with
# epsilon=1e-9 as standard, here pad_mask only contains positive values
# so tf.abs would be redundant)
self.nonpad_ids = tf.to_int32(tf.where(pad_mask < 1e-9))
self.dim_origin = tf.shape(pad_mask)[:1]
示例9: remove
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Tensor [as 別名]
def remove(self, x):
"""Remove padding from the given tensor.
Args:
x (tf.Tensor): of shape [dim_origin,...]
Returns:
a tensor of shape [dim_compressed,...] with dim_compressed <= dim_origin
"""
with tf.name_scope("pad_reduce/remove"):
x_shape = x.get_shape().as_list()
x = tf.gather_nd(
x,
indices=self.nonpad_ids,
)
if not tf.contrib.eager.in_eager_mode():
# This is a hack but for some reason, gather_nd return a tensor of
# undefined shape, so the shape is set up manually
x.set_shape([None] + x_shape[1:])
return x
示例10: restore
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Tensor [as 別名]
def restore(self, x):
"""Add padding back to the given tensor.
Args:
x (tf.Tensor): of shape [dim_compressed,...]
Returns:
a tensor of shape [dim_origin,...] with dim_compressed >= dim_origin. The
dim is restored from the original reference tensor
"""
with tf.name_scope("pad_reduce/restore"):
x = tf.scatter_nd(
indices=self.nonpad_ids,
updates=x,
shape=tf.concat([self.dim_origin, tf.shape(x)[1:]], axis=0),
)
return x
示例11: combine
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Tensor [as 別名]
def combine(self, expert_out, multiply_by_gates=True):
"""Sum together the expert output, weighted by the gates.
The slice corresponding to a particular batch element `b` is computed
as the sum over all experts `i` of the expert output, weighted by the
corresponding gate values. If `multiply_by_gates` is set to False, the
gate values are ignored.
Args:
expert_out: a list of `num_experts` `Tensor`s, each with shape
`[expert_batch_size_i, <extra_output_dims>]`.
multiply_by_gates: a boolean
Returns:
a `Tensor` with shape `[batch_size, <extra_output_dims>]`.
"""
# see comments on convert_gradient_to_tensor
stitched = common_layers.convert_gradient_to_tensor(
tf.concat(expert_out, 0))
if multiply_by_gates:
stitched *= tf.expand_dims(self._nonzero_gates, 1)
combined = tf.unsorted_segment_sum(stitched, self._batch_index,
tf.shape(self._gates)[0])
return combined
示例12: dispatch
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Tensor [as 別名]
def dispatch(self, inp):
"""Create one input Tensor for each expert.
Args:
inp: a list of length num_datashards `Tensor`s with shapes
`[batch_size[d], <extra_input_dims>]`.
Returns:
a list of `num_experts` `Tensor`s with shapes
`[num_examples[i], <extra_input_dims>]`.
"""
dispatched = self._dp(lambda a, b: a.dispatch(b), self._dispatchers, inp)
ret = self._ep(tf.concat, transpose_list_of_lists(dispatched), 0)
if ret[0].dtype == tf.float32:
# see comments on common_layers.convert_gradient_to_tensor
ret = self._ep(common_layers.convert_gradient_to_tensor, ret)
return ret
示例13: body
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Tensor [as 別名]
def body(self, features):
"""Most models will override this function.
Compute label logits for one shard as a function of the transformed
features.
Args:
features: A dictionary of key to Tensor. Each Tensor has shape
[batch_size, ?, ?, hidden_size].
Returns:
output: tensor of logits with shape [batch_size, O, P, body_output_size.
losses: either single loss as a scalar, a list, a tensor (to be averaged)
or a dictionary of losses.
"""
raise NotImplementedError("Abstract Method")
示例14: eval_autoregressive
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Tensor [as 別名]
def eval_autoregressive(self, features=None, decode_length=50):
"""Autoregressive eval.
Quadratic time in decode_length.
Args:
features: an map of string to `Tensor`
decode_length: an integer. How many additional timesteps to decode.
Returns:
logits: `Tensor`
losses: a dictionary: {loss-name (string): floating point `Scalar`}.
Contains a single key "training".
"""
results = self._slow_greedy_infer(features, decode_length=decode_length)
return results["logits"], results["losses"]
示例15: _beam_decode
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Tensor [as 別名]
def _beam_decode(self, features, decode_length, beam_size, top_beams, alpha):
"""Beam search decoding.
Models should ideally implement a more efficient version of this function.
Args:
features: an map of string to `Tensor`
decode_length: an integer. How many additional timesteps to decode.
beam_size: number of beams.
top_beams: an integer. How many of the beams to return.
alpha: Float that controls the length penalty. larger the alpha, stronger
the preference for longer translations.
Returns:
samples: an integer `Tensor`. Top samples from the beam search
"""
return self._beam_decode_slow(features, decode_length, beam_size, top_beams,
alpha)