當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.TFRecordReader方法代碼示例

本文整理匯總了Python中tensorflow.TFRecordReader方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.TFRecordReader方法的具體用法?Python tensorflow.TFRecordReader怎麽用?Python tensorflow.TFRecordReader使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.TFRecordReader方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: read_from_tfrecord

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TFRecordReader [as 別名]
def read_from_tfrecord(filenames):
    tfrecord_file_queue = tf.train.string_input_producer(filenames, name='queue')
    reader = tf.TFRecordReader()
    _, tfrecord_serialized = reader.read(tfrecord_file_queue)

    tfrecord_features = tf.parse_single_example(tfrecord_serialized, features={
        'label': tf.FixedLenFeature([],tf.int64),
        'shape': tf.FixedLenFeature([],tf.string),
        'image': tf.FixedLenFeature([],tf.string),
    }, name='features')

    image = tf.decode_raw(tfrecord_features['image'], tf.uint8)
    shape = tf.decode_raw(tfrecord_features['shape'], tf.int32)

    image = tf.reshape(image, shape)
    label = tfrecord_features['label']
    return label, shape, image 
開發者ID:wdxtub,項目名稱:deep-learning-note,代碼行數:19,代碼來源:18_basic_tfrecord.py

示例2: _read_single_sequence_example

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TFRecordReader [as 別名]
def _read_single_sequence_example(file_list, tokens_shape=None):
  """Reads and parses SequenceExamples from TFRecord-encoded file_list."""
  tf.logging.info('Constructing TFRecordReader from files: %s', file_list)
  file_queue = tf.train.string_input_producer(file_list)
  reader = tf.TFRecordReader()
  seq_key, serialized_record = reader.read(file_queue)
  ctx, sequence = tf.parse_single_sequence_example(
      serialized_record,
      sequence_features={
          data_utils.SequenceWrapper.F_TOKEN_ID:
              tf.FixedLenSequenceFeature(tokens_shape or [], dtype=tf.int64),
          data_utils.SequenceWrapper.F_LABEL:
              tf.FixedLenSequenceFeature([], dtype=tf.int64),
          data_utils.SequenceWrapper.F_WEIGHT:
              tf.FixedLenSequenceFeature([], dtype=tf.float32),
      })
  return seq_key, ctx, sequence 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:19,代碼來源:inputs.py

示例3: read_and_decode

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TFRecordReader [as 別名]
def read_and_decode(filename_queue):
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)
    features = tf.parse_single_example(
        serialized_example,
      # Defaults are not specified since both keys are required.
        features={
            'image_raw': tf.FixedLenFeature([], tf.string),
        })

    image = tf.decode_raw(features['image_raw'], tf.uint8)
    image = tf.reshape(image, [227, 227, 6])

  # Convert from [0, 255] -> [-0.5, 0.5] floats.
    image = tf.cast(image, tf.float32) * (1. / 255) - 0.5
    return tf.split(image, 2, 2) # 3rd dimension two parts 
開發者ID:yiling-chen,項目名稱:view-finding-network,代碼行數:18,代碼來源:vfn_train.py

示例4: read_and_decode_aug

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TFRecordReader [as 別名]
def read_and_decode_aug(filename_queue):
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)
    features = tf.parse_single_example(
        serialized_example,
      # Defaults are not specified since both keys are required.
        features={
            'image_raw': tf.FixedLenFeature([], tf.string),
        })

    image = tf.decode_raw(features['image_raw'], tf.uint8)
    image = tf.image.random_flip_left_right(tf.reshape(image, [227, 227, 6]))
  # Convert from [0, 255] -> [-0.5, 0.5] floats.
    image = tf.cast(image, tf.float32) * (1. / 255) - 0.5
    image = tf.image.random_brightness(image, 0.01)
    image = tf.image.random_contrast(image, 0.95, 1.05)
    return tf.split(image, 2, 2) # 3rd dimension two parts 
開發者ID:yiling-chen,項目名稱:view-finding-network,代碼行數:19,代碼來源:vfn_train.py

示例5: _read_raw

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TFRecordReader [as 別名]
def _read_raw(self):
        """Read raw data from TFRecord.

        Returns:
            :return: data list [input_raw, label_raw].
        """
        self._reader = tf.TFRecordReader()

        _, serialized_example = self._reader.read(self._queue)

        features = tf.parse_single_example(serialized_example,
                                           features={
                                               'name': tf.FixedLenFeature([], tf.string),
                                               'block': tf.FixedLenFeature([], tf.string)
                                           })

        input_raw, label_raw = decode_block(features['block'], tensor_size=self._raw_size)

        if self._with_key:
            return input_raw, label_raw, features['name']
        return input_raw, label_raw 
開發者ID:Enigma-li,項目名稱:SketchCNN,代碼行數:23,代碼來源:loader.py

示例6: read_and_decode

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TFRecordReader [as 別名]
def read_and_decode(filename_queue):
  reader = tf.TFRecordReader()
  _, serialized_example = reader.read(filename_queue)

  features = tf.parse_single_example(
      serialized_example,
      features={
          'image_raw': tf.FixedLenFeature([], tf.string),
          'label': tf.FixedLenFeature([], tf.int64),
      })

  image = tf.decode_raw(features['image_raw'], tf.uint8)
  image.set_shape([784])
  image = tf.cast(image, tf.float32) * (1. / 255)
  label = tf.cast(features['label'], tf.int32)

  return image, label 
開發者ID:GoogleCloudPlatform,項目名稱:cloudml-dist-mnist-example,代碼行數:19,代碼來源:model.py

示例7: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TFRecordReader [as 別名]
def __init__(self, tfrecords_file, image_size=256,
    min_queue_examples=1000, batch_size=1, num_threads=8, name=''):
    """
    Args:
      tfrecords_file: string, tfrecords file path
      min_queue_examples: integer, minimum number of samples to retain in the queue that provides of batches of examples
      batch_size: integer, number of images per batch
      num_threads: integer, number of preprocess threads
    """
    self.tfrecords_file = tfrecords_file
    self.image_size = image_size
    self.min_queue_examples = min_queue_examples
    self.batch_size = batch_size
    self.num_threads = num_threads
    self.reader = tf.TFRecordReader()
    self.name = name 
開發者ID:vanhuyz,項目名稱:CycleGAN-TensorFlow,代碼行數:18,代碼來源:reader.py

示例8: load_patch_coordinates_from_filename_queue

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TFRecordReader [as 別名]
def load_patch_coordinates_from_filename_queue(filename_queue):
  """Loads coordinates and volume names from filename queue.

  Args:
    filename_queue: Tensorflow queue created from create_filename_queue()

  Returns:
    Tuple of coordinates (shape `[1, 3]`) and volume name (shape `[1]`) tensors.
  """
  record_options = tf.python_io.TFRecordOptions(
      tf.python_io.TFRecordCompressionType.GZIP)
  keys, protos = tf.TFRecordReader(options=record_options).read(filename_queue)
  examples = tf.parse_single_example(protos, features=dict(
      center=tf.FixedLenFeature(shape=[1, 3], dtype=tf.int64),
      label_volume_name=tf.FixedLenFeature(shape=[1], dtype=tf.string),
  ))
  coord = examples['center']
  volname = examples['label_volume_name']
  return coord, volname 
開發者ID:google,項目名稱:ffn,代碼行數:21,代碼來源:inputs.py

示例9: prepare_reader

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TFRecordReader [as 別名]
def prepare_reader(self,
                     filename_queue,
                     max_quantized_value=2,
                     min_quantized_value=-2):
    """Creates a single reader thread for YouTube8M SequenceExamples.

    Args:
      filename_queue: A tensorflow queue of filename locations.
      max_quantized_value: the maximum of the quantized value.
      min_quantized_value: the minimum of the quantized value.

    Returns:
      A tuple of video indexes, video features, labels, and padding data.
    """
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)

    return self.prepare_serialized_examples(serialized_example,
        max_quantized_value, min_quantized_value) 
開發者ID:antoine77340,項目名稱:Youtube-8M-WILLOW,代碼行數:21,代碼來源:readers.py

示例10: read_and_decode

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TFRecordReader [as 別名]
def read_and_decode(filename_queue):
    reader = tf.TFRecordReader()
    _, serialized_example = reader.read(filename_queue)
    features = tf.parse_single_example(serialized_example, features = {
        "image/encoded": tf.FixedLenFeature([], tf.string),
        "image/height": tf.FixedLenFeature([], tf.int64),
        "image/width": tf.FixedLenFeature([], tf.int64),
        "image/filename": tf.FixedLenFeature([], tf.string),
        "image/class/label": tf.FixedLenFeature([], tf.int64),})

    image_encoded = features["image/encoded"]
    image_raw = tf.image.decode_jpeg(image_encoded, channels=3)

    current_image_object = image_object()

    current_image_object.image = tf.image.resize_image_with_crop_or_pad(image_raw, FLAGS.image_height, FLAGS.image_width) # cropped image with size 299x299
#    current_image_object.image = tf.cast(image_crop, tf.float32) * (1./255) - 0.5
    current_image_object.height = features["image/height"] # height of the raw image
    current_image_object.width = features["image/width"] # width of the raw image
    current_image_object.filename = features["image/filename"] # filename of the raw image
    current_image_object.label = tf.cast(features["image/class/label"], tf.int32) # label of the raw image
    
    return current_image_object 
開發者ID:yeephycho,項目名稱:tensorflow_input_image_by_tfrecord,代碼行數:25,代碼來源:read_tfrecord_data.py

示例11: read_instances

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TFRecordReader [as 別名]
def read_instances(self, count, shuffle, epochs):
    """Reads the data represented by this DataSource using a TensorFlow reader.

    Arguments:
      epochs: The number of epochs or passes over the data to perform.
    Returns:
      A tensor containing instances that are read.
    """
    # None implies unlimited; switch the value to None when epochs is 0.
    epochs = epochs or None

    options = None
    if self._compressed:
      options = tf.python_io.TFRecordOptions(tf.python_io.TFRecordCompressionType.GZIP)

    files = tf.train.match_filenames_once(self._path, name='files')
    queue = tf.train.string_input_producer(files, num_epochs=epochs, shuffle=shuffle,
                                           name='queue')
    reader = tf.TFRecordReader(options=options, name='reader')
    _, instances = reader.read_up_to(queue, count, name='read')

    return instances 
開發者ID:TensorLab,項目名稱:tensorfx,代碼行數:24,代碼來源:_ds_examples.py

示例12: prepare_reader

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TFRecordReader [as 別名]
def prepare_reader(self, filename_queue, batch_size=1024):

    reader = tf.TFRecordReader()
    _, serialized_examples = reader.read_up_to(filename_queue, batch_size)

    # set the mapping from the fields to data types in the proto
    num_features = len(self.feature_names)
    assert num_features > 0, "self.feature_names is empty!"
    assert len(self.feature_names) == len(self.feature_sizes), \
    "length of feature_names (={}) != length of feature_sizes (={})".format( \
    len(self.feature_names), len(self.feature_sizes))

    feature_map = {"video_id": tf.FixedLenFeature([], tf.string),
                   "labels": tf.VarLenFeature(tf.int64)}
    for feature_index in range(num_features):
      feature_map[self.feature_names[feature_index]] = tf.FixedLenFeature(
          [self.feature_sizes[feature_index]], tf.float32)

    features = tf.parse_example(serialized_examples, features=feature_map)
    labels = tf.sparse_to_indicator(features["labels"], self.num_classes)
    labels.set_shape([None, self.num_classes])
    concatenated_features = tf.concat([
        features[feature_name] for feature_name in self.feature_names], 1)

    return features["video_id"], concatenated_features, labels, tf.ones([tf.shape(serialized_examples)[0]]) 
開發者ID:wangheda,項目名稱:youtube-8m,代碼行數:27,代碼來源:readers.py

示例13: reader

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TFRecordReader [as 別名]
def reader(self):
    """Return a reader for a single entry from the data set.

    See io_ops.py for details of Reader class.

    Returns:
      Reader object that reads the data set.
    """
    return tf.TFRecordReader() 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:11,代碼來源:dataset.py

示例14: ReadInput

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TFRecordReader [as 別名]
def ReadInput(data_filepattern, shuffle, params):
  """Read the tf.SequenceExample tfrecord files.

  Args:
    data_filepattern: tf.SequenceExample tfrecord filepattern.
    shuffle: Whether to shuffle the examples.
    params: parameter dict.

  Returns:
    image sequence batch [batch_size, seq_len, image_size, image_size, channel].
  """
  image_size = params['image_size']
  filenames = tf.gfile.Glob(data_filepattern)
  filename_queue = tf.train.string_input_producer(filenames, shuffle=shuffle)
  reader = tf.TFRecordReader()
  _, example = reader.read(filename_queue)
  feature_sepc = {
      'moving_objs': tf.FixedLenSequenceFeature(
          shape=[image_size * image_size * 3], dtype=tf.float32)}
  _, features = tf.parse_single_sequence_example(
      example, sequence_features=feature_sepc)
  moving_objs = tf.reshape(
      features['moving_objs'], [params['seq_len'], image_size, image_size, 3])
  if shuffle:
    examples = tf.train.shuffle_batch(
        [moving_objs],
        batch_size=params['batch_size'],
        num_threads=64,
        capacity=params['batch_size'] * 100,
        min_after_dequeue=params['batch_size'] * 4)
  else:
    examples = tf.train.batch([moving_objs],
                              batch_size=params['batch_size'],
                              num_threads=16,
                              capacity=params['batch_size'])
  examples /= params['norm_scale']
  return examples 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:39,代碼來源:reader.py

示例15: build

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import TFRecordReader [as 別名]
def build(input_reader_config):
  """Builds a tensor dictionary based on the InputReader config.

  Args:
    input_reader_config: A input_reader_pb2.InputReader object.

  Returns:
    A tensor dict based on the input_reader_config.

  Raises:
    ValueError: On invalid input reader proto.
  """
  if not isinstance(input_reader_config, input_reader_pb2.InputReader):
    raise ValueError('input_reader_config not of type '
                     'input_reader_pb2.InputReader.')

  if input_reader_config.WhichOneof('input_reader') == 'tf_record_input_reader':
    config = input_reader_config.tf_record_input_reader
    _, string_tensor = parallel_reader.parallel_read(
        config.input_path,
        reader_class=tf.TFRecordReader,
        num_epochs=(input_reader_config.num_epochs
                    if input_reader_config.num_epochs else None),
        num_readers=input_reader_config.num_readers,
        shuffle=input_reader_config.shuffle,
        dtypes=[tf.string, tf.string],
        capacity=input_reader_config.queue_capacity,
        min_after_dequeue=input_reader_config.min_after_dequeue)

    return tf_example_decoder.TfExampleDecoder().Decode(string_tensor)

  raise ValueError('Unsupported input_reader_config.') 
開發者ID:datitran,項目名稱:object_detector_app,代碼行數:34,代碼來源:input_reader_builder.py


注:本文中的tensorflow.TFRecordReader方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。