本文整理匯總了Python中tensorflow.SparseTensorValue方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.SparseTensorValue方法的具體用法?Python tensorflow.SparseTensorValue怎麽用?Python tensorflow.SparseTensorValue使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.SparseTensorValue方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _run_graph
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import SparseTensorValue [as 別名]
def _run_graph(self, sess, qq, hh, tt, mdb, to_fetch):
feed = {}
if not self.query_is_language:
feed[self.queries] = [[q] * (self.num_step-1) + [self.num_query]
for q in qq]
else:
feed[self.queries] = [[q] * (self.num_step-1)
+ [[self.num_vocab] * self.num_word]
for q in qq]
feed[self.heads] = hh
feed[self.tails] = tt
for r in xrange(self.num_operator / 2):
feed[self.database[r]] = tf.SparseTensorValue(*mdb[r])
fetches = to_fetch
graph_output = sess.run(fetches, feed)
return graph_output
示例2: shape_internal
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import SparseTensorValue [as 別名]
def shape_internal(input, name=None, optimize=True, out_type=dtypes.int32):
# pylint: disable=redefined-builtin
"""Returns the shape of a tensor.
Args:
input: A `Tensor` or `SparseTensor`.
name: A name for the operation (optional).
optimize: if true, encode the shape as a constant when possible.
out_type: (Optional) The specified output type of the operation
(`int32` or `int64`). Defaults to tf.int32.
Returns:
A `Tensor` of type `out_type`.
"""
with ops.name_scope(name, "Shape", [input]) as name:
if isinstance(
input, (sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue)):
return gen_math_ops.cast(input.dense_shape, out_type)
else:
input_tensor = ops.convert_to_tensor(input)
input_shape = input_tensor.get_shape()
if optimize and input_shape.is_fully_defined():
return constant(input_shape.as_list(), out_type, name=name)
return gen_array_ops.shape(input, name=name, out_type=out_type)
示例3: size_internal
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import SparseTensorValue [as 別名]
def size_internal(input, name=None, optimize=True, out_type=dtypes.int32):
# pylint: disable=redefined-builtin,protected-access
"""Returns the size of a tensor.
Args:
input: A `Tensor` or `SparseTensor`.
name: A name for the operation (optional).
optimize: if true, encode the size as a constant when possible.
out_type: (Optional) The specified output type of the operation
(`int32` or `int64`). Defaults to tf.int32.
Returns:
A `Tensor` of type `out_type`.
"""
with ops.name_scope(name, "Size", [input]) as name:
if isinstance(
input, (sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue)):
return gen_math_ops._prod(
gen_math_ops.cast(input.dense_shape, out_type), 0, name=name)
else:
input_tensor = ops.convert_to_tensor(input)
input_shape = input_tensor.get_shape()
if optimize and input_shape.is_fully_defined():
return constant(input_shape.num_elements(), out_type, name=name)
return gen_array_ops.size(input, name=name, out_type=out_type)
示例4: rank_internal
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import SparseTensorValue [as 別名]
def rank_internal(input, name=None, optimize=True):
# pylint: disable=redefined-builtin
"""Returns the rank of a tensor.
Args:
input: A `Tensor` or `SparseTensor`.
name: A name for the operation (optional).
optimize: if true, encode the rank as a constant when possible.
Returns:
A `Tensor` of type `int32`.
"""
with ops.name_scope(name, "Rank", [input]) as name:
if isinstance(
input, (sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue)):
return gen_array_ops.size(input.dense_shape, name=name)
else:
input_tensor = ops.convert_to_tensor(input)
input_shape = input_tensor.get_shape()
if optimize and input_shape.ndims is not None:
return constant(input_shape.ndims, dtypes.int32, name=name)
return gen_array_ops.rank(input, name=name)
示例5: _get_labels_feed_item
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import SparseTensorValue [as 別名]
def _get_labels_feed_item(label_list, max_time):
"""
Generate the tensor from 'label_list' to feed as labels into the network
Args:
label_list: a list of encoded labels (ints)
max_time: the maximum time length of `label_list`
Returns: the SparseTensorValue to feed into the network
"""
label_shape = np.array([len(label_list), max_time], dtype=np.int)
label_indices = []
label_values = []
for labelIdx, label in enumerate(label_list):
for idIdx, identifier in enumerate(label):
label_indices.append([labelIdx, idIdx])
label_values.append(identifier)
label_indices = np.array(label_indices, dtype=np.int)
label_values = np.array(label_values, dtype=np.int)
return tf.SparseTensorValue(label_indices, label_values, label_shape)
示例6: output_s
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import SparseTensorValue [as 別名]
def output_s(self):
batch_num = int(self.test_data_amt / self.batch_size)
output = np.ones([self.batch_size, 300])
for i in range(batch_num):
x_batch_field, b_batch, z_batch, y_batch, all_prices = self.util_test.get_batch_data_sorted_dwpp(i)
feed_dict = {}
for j in range(len(self.X)):
feed_dict[self.X[j]] = tf.SparseTensorValue(x_batch_field[j], [1] * len(x_batch_field[j]),
[self.batch_size, self.field_sizes[j]])
feed_dict[self.b] = b_batch
feed_dict[self.z] = z_batch
feed_dict[self.y] = y_batch
feed_dict[self.all_prices] = all_prices
output = np.vstack([output, self.sess.run(self.w_all, feed_dict)])
print(output.shape)
np.savetxt(self.output_dir + 's.txt', 1 - output[self.batch_size:,], delimiter='\t', fmt='%.4f')
示例7: convert2SparseTensorValue
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import SparseTensorValue [as 別名]
def convert2SparseTensorValue(list_labels):
#
# list_labels: batch_major
#
#
num_samples = len(list_labels)
num_maxlen = max(map(lambda x: len(x), list_labels))
#
indices = []
values = []
shape = [num_samples, num_maxlen]
#
for idx in range(num_samples):
#
item = list_labels[idx]
#
values.extend(item)
indices.extend([[idx, posi] for posi in range(len(item))])
#
#
return tf.SparseTensorValue(indices = indices, values = values, dense_shape = shape)
#
#
示例8: to_sparse_tensor
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import SparseTensorValue [as 別名]
def to_sparse_tensor(M, value=False):
"""Convert a scipy sparse matrix to a tf SparseTensor or SparseTensorValue.
Parameters
----------
M : scipy.sparse.sparse
Matrix in Scipy sparse format.
value : bool, default False
Convert to tf.SparseTensorValue if True, else to tf.SparseTensor.
Returns
-------
S : tf.SparseTensor or tf.SparseTensorValue
Matrix as a sparse tensor.
Author: Oleksandr Shchur
"""
M = sp.coo_matrix(M)
if value:
return tf.SparseTensorValue(np.vstack((M.row, M.col)).T, M.data, M.shape)
else:
return tf.SparseTensor(np.vstack((M.row, M.col)).T, M.data, M.shape)
示例9: _SparseTensorValue_3x50
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import SparseTensorValue [as 別名]
def _SparseTensorValue_3x50(self, indices_dtype, values_dtype):
# NOTE: This input is intentionally not sorted to validate the
# already_sorted flag below.
ind = np.array([
[0, 0],
[1, 0], [1, 2],
[2, 0], [2, 1],
[1, 1]])
# NB: these are not sorted
indices = np.array([0, 13, 10, 33, 32, 14])
values = np.array([-3, 4, 1, 9, 5, 1])
shape = np.array([3, 3])
indices = tf.SparseTensorValue(
np.array(ind, np.int64),
np.array(indices, indices_dtype),
np.array(shape, np.int64))
values = tf.SparseTensorValue(
np.array(ind, np.int64),
np.array(values, values_dtype),
np.array(shape, np.int64))
return indices, values
示例10: shape_internal
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import SparseTensorValue [as 別名]
def shape_internal(input, name=None, optimize=True, out_type=dtypes.int32):
# pylint: disable=redefined-builtin
"""Returns the shape of a tensor.
Args:
input: A `Tensor` or `SparseTensor`.
name: A name for the operation (optional).
optimize: if true, encode the shape as a constant when possible.
out_type: (Optional) The specified output type of the operation
(`int32` or `int64`). Defaults to tf.int32.
Returns:
A `Tensor` of type `out_type`.
"""
with ops.name_scope(name, "Shape", [input]) as name:
if isinstance(
input, (sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue)):
return gen_math_ops.cast(input.shape, out_type)
else:
input_tensor = ops.convert_to_tensor(input)
input_shape = input_tensor.get_shape()
if optimize and input_shape.is_fully_defined():
return constant(input_shape.as_list(), out_type, name=name)
return gen_array_ops.shape(input, name=name, out_type=out_type)
示例11: size_internal
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import SparseTensorValue [as 別名]
def size_internal(input, name=None, optimize=True, out_type=dtypes.int32):
# pylint: disable=redefined-builtin,protected-access
"""Returns the size of a tensor.
Args:
input: A `Tensor` or `SparseTensor`.
name: A name for the operation (optional).
optimize: if true, encode the size as a constant when possible.
out_type: (Optional) The specified output type of the operation
(`int32` or `int64`). Defaults to tf.int32.
Returns:
A `Tensor` of type `out_type`.
"""
with ops.name_scope(name, "Size", [input]) as name:
if isinstance(
input, (sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue)):
return gen_math_ops._prod(
gen_math_ops.cast(input.shape, out_type), 0, name=name)
else:
input_tensor = ops.convert_to_tensor(input)
input_shape = input_tensor.get_shape()
if optimize and input_shape.is_fully_defined():
return constant(input_shape.num_elements(), out_type, name=name)
return gen_array_ops.size(input, name=name, out_type=out_type)
示例12: clip_last_batch
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import SparseTensorValue [as 別名]
def clip_last_batch(self, last_batch, true_size):
"""This method performs last batch clipping.
Used in cases when dataset is not divisible by the batch size and model
does not support dynamic batch sizes. In those cases, the last batch will
contain some data from the "next epoch" and this method can be used
to remove that data. This method works for both
dense and sparse tensors. In most cases you will not need to overwrite this
method.
Args:
last_batch (list): list with elements that could be either ``np.array``
or ``tf.SparseTensorValue`` containing data for last batch. The
assumption is that the first axis of all data tensors will correspond
to the current batch size.
true_size (int): true size that the last batch should be cut to.
"""
return clip_last_batch(last_batch, true_size)
示例13: make_sparse
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import SparseTensorValue [as 別名]
def make_sparse(sequences, domain_length, peptide_length, n_amino_acids):
def _sparsify(arr, ncols):
nrows = arr.shape[0]
ridxes, compressed_cidxes = np.where(arr >= 0)
cidxes = arr[ridxes, compressed_cidxes]
vals = np.ones(ridxes.size)
idxes = np.vstack([ridxes, cidxes]).T
shape = [nrows, ncols]
return tf.SparseTensorValue(
indices = idxes,
values = vals,
dense_shape = shape
)
col_sizes = [domain_length * n_amino_acids, peptide_length * n_amino_acids, domain_length * peptide_length * n_amino_acids * n_amino_acids]
return [_sparsify(m, ncols) for m, ncols in zip(sequences, col_sizes)]
示例14: size_internal
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import SparseTensorValue [as 別名]
def size_internal(input, name=None, optimize=True, out_type=dtypes.int32):
# pylint: disable=redefined-builtin,protected-access
"""Returns the size of a tensor.
Args:
input: A `Tensor` or `SparseTensor`.
name: A name for the operation (optional).
optimize: if true, encode the size as a constant when possible.
out_type: (Optional) The specified output type of the operation
(`int32` or `int64`). Defaults to tf.int32.
Returns:
A `Tensor` of type `out_type`.
"""
with ops.name_scope(name, "Size", [input]) as name:
if isinstance(input, (sparse_tensor.SparseTensor,
sparse_tensor.SparseTensorValue)):
return gen_math_ops._prod(
gen_math_ops.cast(input.dense_shape, out_type), 0, name=name)
else:
input_tensor = ops.convert_to_tensor(input)
input_shape = input_tensor.get_shape()
if optimize and input_shape.is_fully_defined():
return constant(input_shape.num_elements(), out_type, name=name)
return gen_array_ops.size(input, name=name, out_type=out_type)
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:27,代碼來源:array_ops.py
示例15: rank_internal
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import SparseTensorValue [as 別名]
def rank_internal(input, name=None, optimize=True):
# pylint: disable=redefined-builtin
"""Returns the rank of a tensor.
Args:
input: A `Tensor` or `SparseTensor`.
name: A name for the operation (optional).
optimize: if true, encode the rank as a constant when possible.
Returns:
A `Tensor` of type `int32`.
"""
with ops.name_scope(name, "Rank", [input]) as name:
if isinstance(input, (sparse_tensor.SparseTensor,
sparse_tensor.SparseTensorValue)):
return gen_array_ops.size(input.dense_shape, name=name)
else:
input_tensor = ops.convert_to_tensor(input)
input_shape = input_tensor.get_shape()
if optimize and input_shape.ndims is not None:
return constant(input_shape.ndims, dtypes.int32, name=name)
return gen_array_ops.rank(input, name=name)
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:24,代碼來源:array_ops.py