當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.SparseTensor方法代碼示例

本文整理匯總了Python中tensorflow.SparseTensor方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.SparseTensor方法的具體用法?Python tensorflow.SparseTensor怎麽用?Python tensorflow.SparseTensor使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.SparseTensor方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _reshape_instance_masks

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import SparseTensor [as 別名]
def _reshape_instance_masks(self, keys_to_tensors):
    """Reshape instance segmentation masks.

    The instance segmentation masks are reshaped to [num_instances, height,
    width] and cast to boolean type to save memory.

    Args:
      keys_to_tensors: a dictionary from keys to tensors.

    Returns:
      A 3-D boolean tensor of shape [num_instances, height, width].
    """
    masks = keys_to_tensors['image/segmentation/object']
    if isinstance(masks, tf.SparseTensor):
      masks = tf.sparse_tensor_to_dense(masks)
    height = keys_to_tensors['image/height']
    width = keys_to_tensors['image/width']
    to_shape = tf.cast(tf.stack([-1, height, width]), tf.int32)

    return tf.cast(tf.reshape(masks, to_shape), tf.bool) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:22,代碼來源:tf_example_decoder.py

示例2: _reshape_keypoints

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import SparseTensor [as 別名]
def _reshape_keypoints(self, keys_to_tensors):
    """Reshape keypoints.

    The instance segmentation masks are reshaped to [num_instances,
    num_keypoints, 2].

    Args:
      keys_to_tensors: a dictionary from keys to tensors.

    Returns:
      A 3-D float tensor of shape [num_instances, num_keypoints, 2] with values
        in {0, 1}.
    """
    y = keys_to_tensors['image/object/keypoint/y']
    if isinstance(y, tf.SparseTensor):
      y = tf.sparse_tensor_to_dense(y)
    y = tf.expand_dims(y, 1)
    x = keys_to_tensors['image/object/keypoint/x']
    if isinstance(x, tf.SparseTensor):
      x = tf.sparse_tensor_to_dense(x)
    x = tf.expand_dims(x, 1)
    keypoints = tf.concat([y, x], 1)
    keypoints = tf.reshape(keypoints, [-1, self._num_keypoints, 2])
    return keypoints 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:26,代碼來源:tf_example_decoder.py

示例3: _reshape_instance_masks

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import SparseTensor [as 別名]
def _reshape_instance_masks(self, keys_to_tensors):
    """Reshape instance segmentation masks.

    The instance segmentation masks are reshaped to [num_instances, height,
    width].

    Args:
      keys_to_tensors: a dictionary from keys to tensors.

    Returns:
      A 3-D float tensor of shape [num_instances, height, width] with values
        in {0, 1}.
    """
    height = keys_to_tensors['image/height']
    width = keys_to_tensors['image/width']
    to_shape = tf.cast(tf.stack([-1, height, width]), tf.int32)
    masks = keys_to_tensors['image/object/mask']
    if isinstance(masks, tf.SparseTensor):
      masks = tf.sparse_tensor_to_dense(masks)
    masks = tf.reshape(tf.to_float(tf.greater(masks, 0.0)), to_shape)
    return tf.cast(masks, tf.float32) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:23,代碼來源:tf_example_decoder.py

示例4: extract_dense_weights

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import SparseTensor [as 別名]
def extract_dense_weights(sess):
    for key in dense_layers.keys():
        layer = dense_layers[key]

        # sparse kernel
        dense_kernel = layer.kernel
        dense_kernel_shape = dense_kernel.get_shape().as_list()
        # dense_kernel = tf.reshape(dense_kernel, [dense_kernel_shape[0] * dense_kernel_shape[1] * dense_kernel_shape[2],
        #                                          dense_kernel_shape[3]])
        # dense_kernel = tf.transpose(dense_kernel)
        idx = tf.where(tf.not_equal(dense_kernel, 0))
        sparse_kernel = tf.SparseTensor(idx, tf.gather_nd(dense_kernel, idx), dense_kernel.get_shape())

        if layer.bias is not None:
            dk, k, b = sess.run([dense_kernel, sparse_kernel, layer.bias])
        else:
            dk, k = sess.run([dense_kernel, sparse_kernel])
            b = None
        dense_weights['%s/%s' % (key, 'kernel_dense')] = dk
        dense_weights['%s/%s' % (key, 'kernel')] = k
        dense_weights['%s/%s' % (key, 'kernel_shape')] = dense_kernel_shape
        dense_weights['%s/%s' % (key, 'bias')] = b 
開發者ID:ildoonet,項目名稱:tf-lcnn,代碼行數:24,代碼來源:LookupConvolution2d.py

示例5: compute_edit_distance

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import SparseTensor [as 別名]
def compute_edit_distance(session, labels_true_st, labels_pred_st):
    """Compute edit distance per mini-batch.
    Args:
        session:
        labels_true_st: A `SparseTensor` of ground truth
        labels_pred_st: A `SparseTensor` of prediction
    Returns:
        edit_distances: list of edit distance of each uttearance
    """
    indices, values, dense_shape = labels_true_st
    labels_pred_pl = tf.SparseTensor(indices, values, dense_shape)
    indices, values, dense_shape = labels_pred_st
    labels_true_pl = tf.SparseTensor(indices, values, dense_shape)

    edit_op = tf.edit_distance(labels_pred_pl, labels_true_pl, normalize=True)
    edit_distances = session.run(edit_op)

    return edit_distances 
開發者ID:hirofumi0810,項目名稱:tensorflow_end2end_speech_recognition,代碼行數:20,代碼來源:edit_distance.py

示例6: compute_ler

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import SparseTensor [as 別名]
def compute_ler(self, labels_true, labels_pred):
        """Operation for computing LER (Label Error Rate).
        Args:
            labels_true: A SparseTensor of target labels
            labels_pred: A SparseTensor of predicted labels
        Returns:
            ler_op: operation for computing LER
        """
        # Compute LER (normalize by label length)
        ler_op = tf.reduce_mean(tf.edit_distance(
            labels_pred, labels_true, normalize=True))
        # TODO: consider <EOS>

        # Add a scalar summary for the snapshot of LER
        # with tf.name_scope("ler"):
        #     self.summaries_train.append(tf.summary.scalar(
        #         'ler_train', ler_op))
        #     self.summaries_dev.append(tf.summary.scalar(
        #         'ler_dev', ler_op))
        # TODO: feed_dictのタイミング違うからエラーになる
        # global_stepをupdateする前にする?

        return ler_op 
開發者ID:hirofumi0810,項目名稱:tensorflow_end2end_speech_recognition,代碼行數:25,代碼來源:attention_seq2seq.py

示例7: create_placeholders

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import SparseTensor [as 別名]
def create_placeholders(self):
        """Create placeholders and append them to list."""
        self.inputs_pl_list.append(
            tf.placeholder(tf.float32, shape=[None, None, self.input_size],
                           name='input'))
        self.labels_pl_list.append(
            tf.SparseTensor(tf.placeholder(tf.int64, name='indices'),
                            tf.placeholder(tf.int32, name='values'),
                            tf.placeholder(tf.int64, name='shape')))
        self.labels_sub_pl_list.append(
            tf.SparseTensor(tf.placeholder(tf.int64, name='indices_sub'),
                            tf.placeholder(tf.int32, name='values_sub'),
                            tf.placeholder(tf.int64, name='shape_sub')))
        self.inputs_seq_len_pl_list.append(
            tf.placeholder(tf.int32, shape=[None], name='inputs_seq_len'))
        self.keep_prob_pl_list.append(
            tf.placeholder(tf.float32, name='keep_prob')) 
開發者ID:hirofumi0810,項目名稱:tensorflow_end2end_speech_recognition,代碼行數:19,代碼來源:multitask_ctc.py

示例8: compute_ler

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import SparseTensor [as 別名]
def compute_ler(self, decode_op, labels):
        """Operation for computing LER (Label Error Rate).
        Args:
            decode_op: operation for decoding
            labels: A SparseTensor of target labels
        Return:
            ler_op: operation for computing LER
        """
        # Compute LER (normalize by label length)
        ler_op = tf.reduce_mean(tf.edit_distance(
            decode_op, labels, normalize=True))

        # Add a scalar summary for the snapshot of LER
        self.summaries_train.append(tf.summary.scalar('ler_train', ler_op))
        self.summaries_dev.append(tf.summary.scalar('ler_dev', ler_op))

        return ler_op 
開發者ID:hirofumi0810,項目名稱:tensorflow_end2end_speech_recognition,代碼行數:19,代碼來源:ctc.py

示例9: decoderOutputToText

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import SparseTensor [as 別名]
def decoderOutputToText(self, ctcOutput):
        """ Extract texts from output of CTC decoder """
        # Contains string of labels for each batch element
        encodedLabelStrs = [[] for i in range(Model.batchSize)]
        # Word beam search: label strings terminated by blank
        if self.decoderType == DecoderType.WordBeamSearch:
            blank = len(self.charList)
            for b in range(Model.batchSize):
                for label in ctcOutput[b]:
                    if label == blank:
                        break
                    encodedLabelStrs[b].append(label)
        # TF decoders: label strings are contained in sparse tensor
        else:
            # Ctc returns tuple, first element is SparseTensor
            decoded = ctcOutput[0][0]
            # Go over all indices and save mapping: batch -> values
            idxDict = {b : [] for b in range(Model.batchSize)}
            for (idx, idx2d) in enumerate(decoded.indices):
                label = decoded.values[idx]
                batchElement = idx2d[0]  # index according to [b,t]
                encodedLabelStrs[batchElement].append(label)
        # Map labels to chars for all batch elements
        return [str().join([self.charList[c] for c in labelStr]) for labelStr in encodedLabelStrs] 
開發者ID:sushant097,項目名稱:Handwritten-Line-Text-Recognition-using-Deep-Learning-with-Tensorflow,代碼行數:26,代碼來源:Model.py

示例10: shape

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import SparseTensor [as 別名]
def shape(input, name=None, out_type=dtypes.int32):
  # pylint: disable=redefined-builtin
  """Returns the shape of a tensor.

  This operation returns a 1-D integer tensor representing the shape of `input`.

  For example:

  ```python
  # 't' is [[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]]
  shape(t) ==> [2, 2, 3]
  ```

  Args:
    input: A `Tensor` or `SparseTensor`.
    name: A name for the operation (optional).
    out_type: (Optional) The specified output type of the operation
      (`int32` or `int64`). Defaults to `tf.int32`.

  Returns:
    A `Tensor` of type `out_type`.
  """
  return shape_internal(input, name, optimize=True, out_type=out_type) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:25,代碼來源:array_ops.py

示例11: shape_internal

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import SparseTensor [as 別名]
def shape_internal(input, name=None, optimize=True, out_type=dtypes.int32):
  # pylint: disable=redefined-builtin
  """Returns the shape of a tensor.

  Args:
    input: A `Tensor` or `SparseTensor`.
    name: A name for the operation (optional).
    optimize: if true, encode the shape as a constant when possible.
    out_type: (Optional) The specified output type of the operation
      (`int32` or `int64`). Defaults to tf.int32.

  Returns:
    A `Tensor` of type `out_type`.

  """
  with ops.name_scope(name, "Shape", [input]) as name:
    if isinstance(
        input, (sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue)):
      return gen_math_ops.cast(input.dense_shape, out_type)
    else:
      input_tensor = ops.convert_to_tensor(input)
      input_shape = input_tensor.get_shape()
      if optimize and input_shape.is_fully_defined():
        return constant(input_shape.as_list(), out_type, name=name)
      return gen_array_ops.shape(input, name=name, out_type=out_type) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:27,代碼來源:array_ops.py

示例12: size

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import SparseTensor [as 別名]
def size(input, name=None, out_type=dtypes.int32):
  # pylint: disable=redefined-builtin
  """Returns the size of a tensor.

  This operation returns an integer representing the number of elements in
  `input`.

  For example:

  ```python
  # 't' is [[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]]]
  size(t) ==> 12
  ```

  Args:
    input: A `Tensor` or `SparseTensor`.
    name: A name for the operation (optional).
    out_type: (Optional) The specified output type of the operation
      (`int32` or `int64`). Defaults to tf.int32.

  Returns:
    A `Tensor` of type `out_type`. Defaults to tf.int32.
  """
  return size_internal(input, name, optimize=True, out_type=out_type) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:26,代碼來源:array_ops.py

示例13: size_internal

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import SparseTensor [as 別名]
def size_internal(input, name=None, optimize=True, out_type=dtypes.int32):
  # pylint: disable=redefined-builtin,protected-access
  """Returns the size of a tensor.

  Args:
    input: A `Tensor` or `SparseTensor`.
    name: A name for the operation (optional).
    optimize: if true, encode the size as a constant when possible.
    out_type: (Optional) The specified output type of the operation
      (`int32` or `int64`). Defaults to tf.int32.

  Returns:
    A `Tensor` of type `out_type`.
  """
  with ops.name_scope(name, "Size", [input]) as name:
    if isinstance(
        input, (sparse_tensor.SparseTensor, sparse_tensor.SparseTensorValue)):
      return gen_math_ops._prod(
          gen_math_ops.cast(input.dense_shape, out_type), 0, name=name)
    else:
      input_tensor = ops.convert_to_tensor(input)
      input_shape = input_tensor.get_shape()
      if optimize and input_shape.is_fully_defined():
        return constant(input_shape.num_elements(), out_type, name=name)
      return gen_array_ops.size(input, name=name, out_type=out_type) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:27,代碼來源:array_ops.py

示例14: sp_matrix_to_sp_tensor

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import SparseTensor [as 別名]
def sp_matrix_to_sp_tensor(x):
    """
    Converts a Scipy sparse matrix to a SparseTensor.
    :param x: a Scipy sparse matrix.
    :return: a SparseTensor.
    """
    if not hasattr(x, 'tocoo'):
        try:
            x = sp.coo_matrix(x)
        except:
            raise TypeError('x must be convertible to scipy.coo_matrix')
    else:
        x = x.tocoo()
    out = tf.SparseTensor(
        indices=np.array([x.row, x.col]).T,
        values=x.data,
        dense_shape=x.shape
    )
    return tf.sparse.reorder(out) 
開發者ID:danielegrattarola,項目名稱:spektral,代碼行數:21,代碼來源:sparse.py

示例15: sp_batch_to_sp_tensor

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import SparseTensor [as 別名]
def sp_batch_to_sp_tensor(a_list):
    """
    Converts a list of Scipy sparse matrices to a rank 3 SparseTensor.
    :param a_list: list of Scipy sparse matrices with the same shape.
    :return: SparseTensor of rank 3.
    """
    tensor_data = []
    for i, a in enumerate(a_list):
        values = a.tocoo().data
        row = a.row
        col = a.col
        batch = np.ones_like(col) * i
        tensor_data.append((values, batch, row, col))
    tensor_data = list(map(np.concatenate, zip(*tensor_data)))

    out = tf.SparseTensor(
        indices=np.array(tensor_data[1:]).T,
        values=tensor_data[0],
        dense_shape=(len(a_list), ) + a_list[0].shape
    )

    return out 
開發者ID:danielegrattarola,項目名稱:spektral,代碼行數:24,代碼來源:sparse.py


注:本文中的tensorflow.SparseTensor方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。