當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.SparseFeature方法代碼示例

本文整理匯總了Python中tensorflow.SparseFeature方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.SparseFeature方法的具體用法?Python tensorflow.SparseFeature怎麽用?Python tensorflow.SparseFeature使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.SparseFeature方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _feature_from_feature_spec

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import SparseFeature [as 別名]
def _feature_from_feature_spec(spec, name, domains):
  """Returns a representation of a Feature from a feature spec."""
  if isinstance(spec, tf.io.FixedLenFeature):
    if spec.default_value is not None:
      raise ValueError(
          'feature "{}" had default_value {}, but FixedLenFeature must have '
          'default_value=None'.format(name, spec.default_value))
    dims = [schema_pb2.FixedShape.Dim(size=size) for size in spec.shape]
    feature = schema_pb2.Feature(
        name=name,
        presence=schema_pb2.FeaturePresence(min_fraction=1.0),
        shape=schema_pb2.FixedShape(dim=dims))
  elif isinstance(spec, tf.io.VarLenFeature):
    feature = schema_pb2.Feature(name=name)
  else:
    raise TypeError(
        'Spec for feature "{}" was {} of type {}, expected a '
        'FixedLenFeature, VarLenFeature or SparseFeature'.format(
            name, spec, type(spec)))

  _set_type(name, feature, spec.dtype)
  _set_domain(name, feature, domains.get(name))
  return feature 
開發者ID:tensorflow,項目名稱:transform,代碼行數:25,代碼來源:schema_utils.py

示例2: encode_value

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import SparseFeature [as 別名]
def encode_value(self, string_list, sparse_value):
    """Encode the value of this feature into the CSV line."""
    index, value = sparse_value
    if len(value) == len(index):
      if self._encoder:
        string_list[self._value_index] = self._encoder.encode_record(
            map(str, value))
        string_list[self._index_index] = self._encoder.encode_record(
            map(str, index))
      else:
        string_list[self._value_index] = str(value[0]) if value else ''
        string_list[self._index_index] = str(index[0]) if index else ''
    else:
      raise ValueError(
          'SparseFeature %r has value and index unaligned %r vs %r.' %
          (self._name, value, index)) 
開發者ID:amygdala,項目名稱:code-snippets,代碼行數:18,代碼來源:mcsv_coder.py

示例3: test_round_trip

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import SparseFeature [as 別名]
def test_round_trip(self):
        feature_spec = {
            "scalar_feature_1": tf.FixedLenFeature(shape=[], dtype=tf.int64),
            "scalar_feature_2": tf.FixedLenFeature(shape=[], dtype=tf.int64),
            "scalar_feature_3": tf.FixedLenFeature(shape=[], dtype=tf.float32),
            "varlen_feature_1": tf.VarLenFeature(dtype=tf.float32),
            "varlen_feature_2": tf.VarLenFeature(dtype=tf.string),
            "1d_vector_feature": tf.FixedLenFeature(shape=[1], dtype=tf.string),
            "2d_vector_feature": tf.FixedLenFeature(shape=[2, 2], dtype=tf.float32),
            "sparse_feature": tf.SparseFeature("idx", "value", tf.float32, 10),
        }
        inferred_schema = feature_spec_to_schema(feature_spec)
        inferred_feature_spec = schema_to_feature_spec(inferred_schema)
        self.assertEqual(inferred_feature_spec, feature_spec) 
開發者ID:spotify,項目名稱:spotify-tensorflow,代碼行數:16,代碼來源:tf_schema_utils_test.py

示例4: test_example_with_feature_spec_decoder

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import SparseFeature [as 別名]
def test_example_with_feature_spec_decoder(self):
        feature_spec = {
            "scalar_feature_1": tf.FixedLenFeature(shape=[], dtype=tf.int64),
            "scalar_feature_2": tf.FixedLenFeature(shape=[], dtype=tf.int64),
            "scalar_feature_3": tf.FixedLenFeature(shape=[], dtype=tf.float32),
            "varlen_feature_1": tf.VarLenFeature(dtype=tf.float32),
            "varlen_feature_2": tf.VarLenFeature(dtype=tf.string),
            "1d_vector_feature": tf.FixedLenFeature(shape=[1], dtype=tf.string),
            "2d_vector_feature": tf.FixedLenFeature(shape=[2, 2], dtype=tf.float32),
            "sparse_feature": tf.SparseFeature("sparse_feature_idx", "sparse_feature_value",
                                               tf.float32, 10),
        }

        dec = ExampleWithFeatureSpecDecoder(feature_spec)
        actual_json = json.loads(dec.to_json(self.example_str))
        expected_decoded = {
            "scalar_feature_1": 12,
            "scalar_feature_2": 12,
            "scalar_feature_3": 1.0,
            "varlen_feature_1": [89.0],
            "1d_vector_feature": ["this is a ,text"],
            "2d_vector_feature": [[1.0, 2.0], [3.0, 4.0]],
            "varlen_feature_2": ["female"],
            "sparse_feature_idx": [1, 4],
            "sparse_feature_value": [12.0, 20.0],
        }
        self.assertEqual(actual_json, expected_decoded) 
開發者ID:spotify,項目名稱:spotify-tensorflow,代碼行數:29,代碼來源:example_decoders_test.py

示例5: parse_schema

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import SparseFeature [as 別名]
def parse_schema(cls, schema_path):
        # type: (str) -> Tuple[Dict[str, Union[tf.FixedLenFeature, tf.VarLenFeature, tf.SparseFeature]], Schema]  # noqa: E501
        """
        Returns TensorFlow Feature Spec and parsed tf.metadata Schema for given tf.metadata Schema.

        :param schema_path: tf.metadata Schema path
        """
        schema = parse_schema_file(schema_path)
        return schema_to_feature_spec(schema), schema 
開發者ID:spotify,項目名稱:spotify-tensorflow,代碼行數:11,代碼來源:dataset.py

示例6: parse_schema_from_stats

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import SparseFeature [as 別名]
def parse_schema_from_stats(cls, stats_path):
        # type: (str) -> Tuple[Dict[str, Union[tf.FixedLenFeature, tf.VarLenFeature, tf.SparseFeature]], Schema]  # noqa: E501
        """
        Returns TensorFlow Feature Spec and parsed tf.metadata Schema for given tf.metadata
        DatasetFeatureStatisticsList.

        :param stats_path: tf.metadata DatasetFeatureStatisticsList path
        """
        import tensorflow_data_validation as tfdv
        stats = tfdv.load_statistics(stats_path)
        schema = tfdv.infer_schema(stats)
        return schema_to_feature_spec(schema), schema 
開發者ID:spotify,項目名稱:spotify-tensorflow,代碼行數:14,代碼來源:dataset.py

示例7: _examples

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import SparseFeature [as 別名]
def _examples(cls,
                      file_pattern,  # type: str
                      schema_path=None,  # type: str
                      feature_spec=None,  # type: Dict[str, Union[tf.FixedLenFeature, tf.VarLenFeature, tf.SparseFeature]]  # noqa: E501
                      default_value=0,  # type: float
                      compression_type=None,  # type: str
                      batch_size=128,  # type: int
                      shuffle=True,  # type: bool
                      num_epochs=1,  # type: int
                      shuffle_buffer_size=10000,  # type: int
                      shuffle_seed=None,  # type: int
                      prefetch_buffer_size=1,  # type: int
                      reader_num_threads=1,  # type: int
                      parser_num_threads=2,  # type: int
                      sloppy_ordering=False,  # type: bool
                      drop_final_batch=False  # type: bool
                      ):
            # type: (...) -> Iterator[pd.DataFrame]
            Datasets._assert_eager("DataFrame")
            dataset = Datasets.dict._examples(file_pattern=file_pattern,
                                              schema_path=schema_path,
                                              default_value=default_value,
                                              feature_spec=feature_spec,
                                              compression_type=compression_type,
                                              batch_size=batch_size,
                                              shuffle=shuffle,
                                              num_epochs=num_epochs,
                                              shuffle_buffer_size=shuffle_buffer_size,
                                              shuffle_seed=shuffle_seed,
                                              prefetch_buffer_size=prefetch_buffer_size,
                                              reader_num_threads=reader_num_threads,
                                              parser_num_threads=parser_num_threads,
                                              sloppy_ordering=sloppy_ordering,
                                              drop_final_batch=drop_final_batch)
            for d in dataset:
                yield pd.DataFrame(data=d) 
開發者ID:spotify,項目名稱:spotify-tensorflow,代碼行數:38,代碼來源:dataset.py

示例8: _sparse_feature_from_feature_spec

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import SparseFeature [as 別名]
def _sparse_feature_from_feature_spec(spec, name, domains):
  """Returns a representation of a SparseFeature from a feature spec."""
  if isinstance(spec.index_key, list):
    raise ValueError(
        'SparseFeature "{}" had index_key {}, but size and index_key '
        'fields should be single values'.format(name, spec.index_key))
  if isinstance(spec.size, list):
    raise ValueError(
        'SparseFeature "{}" had size {}, but size and index_key fields '
        'should be single values'.format(name, spec.size))

  # Create a index feature.
  index_feature = schema_pb2.Feature(
      name=spec.index_key, type=schema_pb2.INT,
      int_domain=schema_pb2.IntDomain(min=0, max=spec.size - 1))

  # Create a value feature.
  value_feature = schema_pb2.Feature(name=spec.value_key)
  _set_type(name, value_feature, spec.dtype)
  _set_domain(name, value_feature, domains.get(name))

  # Create a sparse feature which refers to the index and value features.
  index_feature_ref = schema_pb2.SparseFeature.IndexFeature(
      name=spec.index_key)
  value_feature_ref = schema_pb2.SparseFeature.ValueFeature(
      name=spec.value_key)
  sparse_feature = schema_pb2.SparseFeature(
      name=name, is_sorted=True if spec.already_sorted else None,
      index_feature=[index_feature_ref], value_feature=value_feature_ref)

  return (index_feature, value_feature, sparse_feature) 
開發者ID:tensorflow,項目名稱:transform,代碼行數:33,代碼來源:schema_utils.py

示例9: parse_value

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import SparseFeature [as 別名]
def parse_value(self, string_list):
    """Parse the value of this feature from string list split from CSV line."""
    value_str = string_list[self._value_index]
    index_str = string_list[self._index_index]

    if value_str and self._reader:
      values = map(self._cast_fn, _decode_with_reader(value_str, self._reader))
    elif value_str:
      values = [self._cast_fn(value_str)]
    else:
      values = []

    # In Python 2, if the value is too large to fit into an int, int(..) returns
    # a long, but ints are cheaper to use when possible.
    if index_str and self._reader:
      indices = map(int, _decode_with_reader(index_str, self._reader))
    elif index_str:
      indices = [int(index_str)]
    else:
      indices = []

    # Check that all indices are in range.
    if indices:
      i_min, i_max = min(indices), max(indices)
      if i_min < 0 or i_max >= self._size:
        i_bad = i_min if i_min < 0 else i_max
        raise ValueError('SparseFeature %r has index %d out of range [0, %d)'
                         % (self._name, i_bad, self._size))

    if len(values) != len(indices):
      raise ValueError(
          'SparseFeature %r has indices and values of different lengths: '
          'values: %r, indices: %r' % (self._name, values, indices))

    return (np.asarray(indices), np.asarray(values)) 
開發者ID:amygdala,項目名稱:code-snippets,代碼行數:37,代碼來源:mcsv_coder.py

示例10: examples_via_feature_spec

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import SparseFeature [as 別名]
def examples_via_feature_spec(cls,
                                  file_pattern,  # type: str
                                  feature_spec,  # type: Dict[str, Union[tf.FixedLenFeature, tf.VarLenFeature, tf.SparseFeature]]  # noqa: E501
                                  compression_type=None,  # type: str
                                  batch_size=128,  # type: int
                                  shuffle=True,  # type: bool
                                  num_epochs=1,  # type: int
                                  shuffle_buffer_size=10000,  # type: int
                                  shuffle_seed=None,  # type: int
                                  prefetch_buffer_size=1,  # type: int
                                  reader_num_threads=1,  # type: int
                                  parser_num_threads=2,  # type: int
                                  sloppy_ordering=False,  # type: bool
                                  drop_final_batch=False  # type: bool
                                  ):
        # type: (...) -> tf.data.Dataset
        """Get `Dataset` of parsed `Example` protos.

        :param file_pattern: List of files or patterns of file paths containing
                             `Example` records. See `tf.gfile.Glob` for pattern rules
        :param feature_spec: TensorFlow feature spec
        :param compression_type: TFRecord compression type, see `tf.data.TFRecordDataset` doc
        :param batch_size: see `tensorflow.contrib.data.make_batched_features_dataset` doc
        :param shuffle: see `tensorflow.contrib.data.make_batched_features_dataset` doc
        :param num_epochs: see `tensorflow.contrib.data.make_batched_features_dataset` doc
        :param shuffle_buffer_size: see `tensorflow.contrib.data.make_batched_features_dataset` doc
        :param shuffle_seed: see `tensorflow.contrib.data.make_batched_features_dataset` doc
        :param prefetch_buffer_size: see `tensorflow.contrib.data.make_batched_features_dataset` doc
        :param reader_num_threads: see `tensorflow.contrib.data.make_batched_features_dataset` doc
        :param parser_num_threads: see `tensorflow.contrib.data.make_batched_features_dataset` doc
        :param sloppy_ordering: see `tensorflow.contrib.data.make_batched_features_dataset` doc
        :param drop_final_batch: see `tensorflow.contrib.data.make_batched_features_dataset` doc

        :return `Dataset`, which holds results of the parsing of `Example` protos
        """
        return cls._examples(file_pattern,
                             feature_spec=feature_spec,
                             compression_type=compression_type,
                             batch_size=batch_size,
                             shuffle=shuffle,
                             num_epochs=num_epochs,
                             shuffle_buffer_size=shuffle_buffer_size,
                             shuffle_seed=shuffle_seed,
                             prefetch_buffer_size=prefetch_buffer_size,
                             reader_num_threads=reader_num_threads,
                             parser_num_threads=parser_num_threads,
                             sloppy_ordering=sloppy_ordering,
                             drop_final_batch=drop_final_batch) 
開發者ID:spotify,項目名稱:spotify-tensorflow,代碼行數:50,代碼來源:dataset.py

示例11: make_input_fn

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import SparseFeature [as 別名]
def make_input_fn(self, file_paths, epochs=None):
        """
        Function that loads the TFRecords files and creates the placeholders
        for the data inputs.

        Parameters
        ----------
        file_paths : list
            List of TFRecord files from which to read from.
        epochs : int
            Integer specifying the number of times to read through the dataset.
            If None, cycles through the dataset forever.
            NOTE - If specified, creates a variable that must be initialized,
            so call tf.local_variables_initializer() and run the op in a session.
            Default is None.

        Returns
        -------
        features : Tensor
            Tensor containing a batch of cells (vector of expression levels).
        """

        feature_map = {'scg': tf.SparseFeature(index_key='indices',
                                               value_key='values',
                                               dtype=tf.float32,
                                               size=self.genes_no)
                       }

        options = tf.python_io.TFRecordOptions(
            tf.python_io.TFRecordCompressionType.GZIP)

        batched_features = tf.contrib.learn.read_batch_features(
            file_pattern=file_paths,
            batch_size=self.batch_size,
            features=feature_map,
            reader=lambda: tf.TFRecordReader(options=options),
            num_epochs=epochs
            )

        sgc = batched_features['scg']

        sparse = tf.sparse_reshape(sgc, (self.batch_size, self.genes_no))

        dense = tf.sparse_tensor_to_dense(sparse)

        features = tf.reshape(dense, (self.batch_size, self.genes_no))

        return features 
開發者ID:imsb-uke,項目名稱:scGAN,代碼行數:50,代碼來源:scGAN.py

示例12: make_input_fn

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import SparseFeature [as 別名]
def make_input_fn(self, file_paths, epochs=None):
        """
        Function that loads the TFRecords files and creates the placeholders
        for the data inputs.

        Parameters
        ----------
        file_paths : list
            List of TFRecord files from which to read from.
        epochs : int
            Integer specifying the number of times to read through the dataset.
            If None, cycles through the dataset forever.
            NOTE - If specified, creates a variable that must be initialized,
            so call tf.local_variables_initializer() and run the op in a session.
            Default is None.

        Returns
        -------
        features : Tensor
            Tensor containing a batch of cells (vector of expression levels).
        cluster : Tensor
            Tensor containing (a batch of) the cluster indexes of the
            corresponding cells.
        """

        feature_map = {'scg': tf.SparseFeature(index_key='indices',
                                               value_key='values',
                                               dtype=tf.float32,
                                               size=self.genes_no),
                       'cluster_int': tf.FixedLenFeature(1, tf.int64)}

        options = tf.python_io.TFRecordOptions(
            tf.python_io.TFRecordCompressionType.GZIP)

        batched_features = tf.contrib.learn.read_batch_features(
            file_pattern=file_paths,
            batch_size=self.batch_size,
            features=feature_map,
            reader=lambda: tf.TFRecordReader(
                options=options),
            num_epochs=epochs)

        sgc = batched_features['scg']

        sparse = tf.sparse_reshape(sgc, (self.batch_size, self.genes_no))

        dense = tf.sparse_tensor_to_dense(sparse)

        cluster = tf.squeeze(tf.to_int32(batched_features['cluster_int']))

        features = tf.reshape(dense, (self.batch_size, self.genes_no))

        return features, cluster 
開發者ID:imsb-uke,項目名稱:scGAN,代碼行數:55,代碼來源:cscGAN.py

示例13: schema_from_feature_spec

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import SparseFeature [as 別名]
def schema_from_feature_spec(feature_spec, domains=None):
  """Convert a feature spec to a Schema proto.

  Args:
    feature_spec: A TensorFlow feature spec
    domains: (optional) a dict whose keys are feature names and values are one
        of schema_pb2.IntDomain, schema_pb2.StringDomain or
        schema_pb2.FloatDomain.

  Returns:
    A Schema proto

  Raises:
    ValueError: If the feature spec cannot be converted to a Schema proto.
  """
  if domains is None:
    domains = {}

  result = schema_pb2.Schema()

  # Some feature specs can only be represented with the legacy schema, in
  # particular feature specs where any FixedLenFeature has default_value set.
  # We represent these (and only these) using a schema with
  # generate_legacy_feature_spec=True.  Note the generate_legacy_feature_spec
  # field is not part of the open source codebase.
  if schema_utils_legacy.should_set_generate_legacy_feature_spec(feature_spec):
    return _legacy_schema_from_feature_spec(feature_spec, domains)

  schema_utils_legacy.set_generate_legacy_feature_spec(result, False)

  # Add the features to the schema.
  for name, spec in sorted(feature_spec.items()):
    if isinstance(spec, tf.io.SparseFeature):
      (index_feature, value_feature, sparse_feature) = (
          _sparse_feature_from_feature_spec(spec, name, domains))
      result.feature.add().CopyFrom(index_feature)
      result.feature.add().CopyFrom(value_feature)
      result.sparse_feature.add().CopyFrom(sparse_feature)
    else:
      result.feature.add().CopyFrom(
          _feature_from_feature_spec(spec, name, domains))
  return result 
開發者ID:tensorflow,項目名稱:transform,代碼行數:44,代碼來源:schema_utils.py

示例14: schema_as_feature_spec

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import SparseFeature [as 別名]
def schema_as_feature_spec(schema_proto):
  """Generates a feature spec from a Schema proto.

  For a Feature with a FixedShape we generate a FixedLenFeature with no default.
  For a Feature without a FixedShape we generate a VarLenFeature.  For a
  SparseFeature we generate a SparseFeature.

  Args:
    schema_proto: A Schema proto.

  Returns:
    A pair (feature spec, domains) where feature spec is a dict whose keys are
        feature names and values are instances of FixedLenFeature, VarLenFeature
        or SparseFeature, and `domains` is a dict whose keys are feature names
        and values are one of the `domain_info` oneof, e.g. IntDomain.

  Raises:
    ValueError: If the schema proto is invalid.
  """
  for feature in schema_proto.feature:
    if RAGGED_TENSOR_TAG in feature.annotation.tag:
      raise ValueError(
          'Feature "{}" had tag "{}".  Features represented by a '
          'RaggedTensor cannot be serialized/deserialized to Example proto or '
          'other formats, and cannot have a feature spec generated for '
          'them.'.format(feature.name, RAGGED_TENSOR_TAG))

  if schema_utils_legacy.get_generate_legacy_feature_spec(schema_proto):
    return _legacy_schema_as_feature_spec(schema_proto)
  feature_spec = {}
  # Will hold the domain_info (IntDomain, FloatDomain etc.) of the feature.  For
  # sparse features, will hold the domain_info of the values feature.  Features
  # that do not have a domain set will not be present in `domains`.
  domains = {}
  feature_by_name = {feature.name: feature for feature in schema_proto.feature}
  string_domains = _get_string_domains(schema_proto)

  # Generate a `tf.SparseFeature` for each element of
  # `schema_proto.sparse_feature`.  This also removed the features from
  # feature_by_name.
  # TODO(KesterTong): Allow sparse features to share index features.
  for feature in schema_proto.sparse_feature:
    if _include_in_parsing_spec(feature):
      feature_spec[feature.name], domains[feature.name] = (
          _sparse_feature_as_feature_spec(
              feature, feature_by_name, string_domains))

  # Generate a `tf.FixedLenFeature` or `tf.VarLenFeature` for each element of
  # `schema_proto.feature` that was not referenced by a `SparseFeature`.
  for name, feature in feature_by_name.items():
    if _include_in_parsing_spec(feature):
      feature_spec[name], domains[name] = _feature_as_feature_spec(
          feature, string_domains)

  schema_utils_legacy.check_for_unsupported_features(schema_proto)

  domains = {name: domain for name, domain in domains.items()
             if domain is not None}
  return SchemaAsFeatureSpecResult(feature_spec, domains) 
開發者ID:tensorflow,項目名稱:transform,代碼行數:61,代碼來源:schema_utils.py

示例15: _sparse_feature_as_feature_spec

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import SparseFeature [as 別名]
def _sparse_feature_as_feature_spec(feature, feature_by_name, string_domains):
  """Returns a representation of a SparseFeature as a feature spec."""
  index_keys = [index_feature.name for index_feature in feature.index_feature]
  index_features = []
  for index_key in index_keys:
    try:
      index_features.append(feature_by_name.pop(index_key))
    except KeyError:
      raise ValueError(
          'sparse_feature "{}" referred to index feature "{}" which did not '
          'exist in the schema'.format(feature.name, index_key))

  if len(index_features) != 1:
    raise ValueError(
        'sparse_feature "{}" had rank {} but currently only rank 1'
        ' sparse features are supported'.format(
            feature.name, len(index_features)))

  value_key = feature.value_feature.name
  try:
    value_feature = feature_by_name.pop(value_key)
  except KeyError:
    raise ValueError(
        'sparse_feature "{}" referred to value feature "{}" which did not '
        'exist in the schema or was referred to as an index or value multiple '
        'times.'.format(feature.name, value_key))

  if index_features[0].HasField('int_domain'):
    # Currently we only handle O-based INT index features whose minimum
    # domain value must be zero.
    if not index_features[0].int_domain.HasField('min'):
      raise ValueError('Cannot determine dense shape of sparse feature '
                       '"{}". The minimum domain value of index feature "{}"'
                       ' is not set.'.format(feature.name, index_keys[0]))
    if index_features[0].int_domain.min != 0:
      raise ValueError('Only 0-based index features are supported. Sparse '
                       'feature "{}" has index feature "{}" whose minimum '
                       'domain value is {}.'.format(
                           feature.name, index_keys[0],
                           index_features[0].int_domain.min))

    if not index_features[0].int_domain.HasField('max'):
      raise ValueError('Cannot determine dense shape of sparse feature '
                       '"{}". The maximum domain value of index feature "{}"'
                       ' is not set.'.format(feature.name, index_keys[0]))
    shape = [index_features[0].int_domain.max + 1]
  else:
    raise ValueError('Cannot determine dense shape of sparse feature "{}".'
                     ' The index feature "{}" had no int_domain set.'.format(
                         feature.name, index_keys[0]))

  dtype = _feature_dtype(value_feature)
  if len(index_keys) != len(shape):
    raise ValueError(
        'sparse_feature "{}" had rank {} (shape {}) but {} index keys were'
        ' given'.format(feature.name, len(shape), shape, len(index_keys)))
  spec = tf.io.SparseFeature(index_keys[0], value_key, dtype, shape[0],
                             feature.is_sorted)
  domain = _get_domain(value_feature, string_domains)
  return spec, domain 
開發者ID:tensorflow,項目名稱:transform,代碼行數:62,代碼來源:schema_utils.py


注:本文中的tensorflow.SparseFeature方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。