當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.Session方法代碼示例

本文整理匯總了Python中tensorflow.Session方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.Session方法的具體用法?Python tensorflow.Session怎麽用?Python tensorflow.Session使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.Session方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: savepb

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Session [as 別名]
def savepb(self):
		"""
		Create a standalone const graph def that 
		C++	can load and run.
		"""
		darknet_pb = self.to_darknet()
		flags_pb = self.FLAGS
		flags_pb.verbalise = False
		
		flags_pb.train = False
		# rebuild another tfnet. all const.
		tfnet_pb = TFNet(flags_pb, darknet_pb)		
		tfnet_pb.sess = tf.Session(graph = tfnet_pb.graph)
		# tfnet_pb.predict() # uncomment for unit testing
		name = 'built_graph/{}.pb'.format(self.meta['name'])
		os.makedirs(os.path.dirname(name), exist_ok=True)
		#Save dump of everything in meta
		with open('built_graph/{}.meta'.format(self.meta['name']), 'w') as fp:
			json.dump(self.meta, fp)
		self.say('Saving const graph def to {}'.format(name))
		graph_def = tfnet_pb.sess.graph_def
		tf.train.write_graph(graph_def,'./', name, False) 
開發者ID:AmeyaWagh,項目名稱:Traffic_sign_detection_YOLO,代碼行數:24,代碼來源:build.py

示例2: create_session

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Session [as 別名]
def create_session(config_dict=dict(), force_as_default=False):
    config = tf.ConfigProto()
    for key, value in config_dict.items():
        fields = key.split('.')
        obj = config
        for field in fields[:-1]:
            obj = getattr(obj, field)
        setattr(obj, fields[-1], value)
    session = tf.Session(config=config)
    if force_as_default:
        session._default_session = session.as_default()
        session._default_session.enforce_nesting = False
        session._default_session.__enter__()
    return session

#----------------------------------------------------------------------------
# Initialize all tf.Variables that have not already been initialized.
# Equivalent to the following, but more efficient and does not bloat the tf graph:
#   tf.variables_initializer(tf.report_unitialized_variables()).run() 
開發者ID:zalandoresearch,項目名稱:disentangling_conditional_gans,代碼行數:21,代碼來源:tfutil.py

示例3: test_feature_pairing

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Session [as 別名]
def test_feature_pairing(self):
        fgsm = FastGradientMethod(self.model)
        attack = lambda x: fgsm.generate(x)
        loss = FeaturePairing(self.model, weight=0.1, attack=attack)
        l = loss.fprop(self.x, self.y)
        with tf.Session() as sess:
            vl1 = sess.run(l, feed_dict={self.x: self.vx, self.y: self.vy})
            vl2 = sess.run(l, feed_dict={self.x: self.vx, self.y: self.vy})
        self.assertClose(vl1, sum([4.296023369, 2.963884830]) / 2., atol=1e-6)
        self.assertClose(vl2, sum([4.296023369, 2.963884830]) / 2., atol=1e-6)

        loss = FeaturePairing(self.model, weight=10., attack=attack)
        l = loss.fprop(self.x, self.y)
        with tf.Session() as sess:
            vl1 = sess.run(l, feed_dict={self.x: self.vx, self.y: self.vy})
            vl2 = sess.run(l, feed_dict={self.x: self.vx, self.y: self.vy})
        self.assertClose(vl1, sum([4.333082676, 3.00094414]) / 2., atol=1e-6)
        self.assertClose(vl2, sum([4.333082676, 3.00094414]) / 2., atol=1e-6) 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:20,代碼來源:test_defenses.py

示例4: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Session [as 別名]
def __init__(self, env, dueling, noisy, fname):
        self.g = tf.Graph()
        self.noisy = noisy
        self.dueling = dueling
        self.env = env
        with self.g.as_default():
            self.act = deepq.build_act_enjoy(
                make_obs_ph=lambda name: U.Uint8Input(
                    env.observation_space.shape, name=name),
                q_func=dueling_model if dueling else model,
                num_actions=env.action_space.n,
                noisy=noisy
            )
            self.saver = tf.train.Saver()
        self.sess = tf.Session(graph=self.g)

        if fname is not None:
            print('Loading Model...')
            self.saver.restore(self.sess, fname) 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:21,代碼來源:enjoy-adv.py

示例5: cleverhans_attack_wrapper

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Session [as 別名]
def cleverhans_attack_wrapper(cleverhans_attack_fn, reset=True):
    def attack(a):
        session = tf.Session()
        with session.as_default():
            model = RVBCleverhansModel(a)
            adversarial_image = cleverhans_attack_fn(model, session, a)
            adversarial_image = np.squeeze(adversarial_image, axis=0)
            if reset:
                # optionally, reset to ignore other adversarials
                # found during the search
                a._reset()
            # run predictions to make sure the returned adversarial
            # is taken into account
            min_, max_ = a.bounds()
            adversarial_image = np.clip(adversarial_image, min_, max_)
            a.predictions(adversarial_image)
    return attack 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:19,代碼來源:utils.py

示例6: setUp

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Session [as 別名]
def setUp(self):
        super(TestRunnerMultiGPU, self).setUp()
        self.sess = tf.Session()

        inputs = []
        outputs = []
        self.niter = 10
        niter = self.niter
        # A Simple graph with `niter` sub-graphs.
        with tf.variable_scope(None, 'runner'):
            for i in range(niter):
                v = tf.get_variable('v%d' % i, shape=(100, 10))
                w = tf.get_variable('w%d' % i, shape=(100, 1))

                inputs += [{'v': v, 'w': w}]
                outputs += [{'v': v, 'w': w}]

        self.runner = RunnerMultiGPU(inputs, outputs, sess=self.sess) 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:20,代碼來源:test_runner.py

示例7: test_drop

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Session [as 別名]
def test_drop():
    # Make sure dropout is activated successfully

    # We would like to configure the test to deterministically drop,
    # so that the test does not need to use multiple runs.
    # However, tf.nn.dropout divides by include_prob, so zero or
    # infinitesimal include_prob causes NaNs.
    # 1e-8 does not cause NaNs and shouldn't be a significant source
    # of test flakiness relative to dependency downloads failing, etc.
    model = MLP(input_shape=[1, 1], layers=[Dropout(name='output',
                                                    include_prob=1e-8)])
    x = tf.constant([[1]], dtype=tf.float32)
    y = model.get_layer(x, 'output', dropout=True)
    sess = tf.Session()
    y_value = sess.run(y)
    # Subject to very rare random failure because include_prob is not exact 0
    assert y_value == 0., y_value 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:19,代碼來源:test_dropout.py

示例8: test_override

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Session [as 別名]
def test_override():
    # Make sure dropout_dict changes dropout probabilities successful

    # We would like to configure the test to deterministically drop,
    # so that the test does not need to use multiple runs.
    # However, tf.nn.dropout divides by include_prob, so zero or
    # infinitesimal include_prob causes NaNs.
    # For this test, random failure to drop will not cause the test to fail.
    # The stochastic version should not even run if everything is working
    # right.
    model = MLP(input_shape=[1, 1], layers=[Dropout(name='output',
                                                    include_prob=1e-8)])
    x = tf.constant([[1]], dtype=tf.float32)
    dropout_dict = {'output': 1.}
    y = model.get_layer(x, 'output', dropout=True, dropout_dict=dropout_dict)
    sess = tf.Session()
    y_value = sess.run(y)
    assert y_value == 1., y_value 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:20,代碼來源:test_dropout.py

示例9: test_separate

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Session [as 別名]
def test_separate(test_file, configuration, backend):
    """ Test separation from raw data. """
    with tf.Session() as sess:
        instruments = MODEL_TO_INST[configuration]
        adapter = get_default_audio_adapter()
        waveform, _ = adapter.load(test_file)
        separator = Separator(configuration, stft_backend=backend)
        prediction = separator.separate(waveform, test_file)
        assert len(prediction) == len(instruments)
        for instrument in instruments:
            assert instrument in prediction
        for instrument in instruments:
            track = prediction[instrument]
            assert waveform.shape[:-1] == track.shape[:-1]
            assert not np.allclose(waveform, track)
            for compared in instruments:
                if instrument != compared:
                    assert not np.allclose(track, prediction[compared]) 
開發者ID:deezer,項目名稱:spleeter,代碼行數:20,代碼來源:test_separator.py

示例10: main

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Session [as 別名]
def main():
    rgb = False
    if rgb:
        kernels_list = [kernels.BLUR_FILTER_RGB,
                        kernels.SHARPEN_FILTER_RGB,
                        kernels.EDGE_FILTER_RGB,
                        kernels.TOP_SOBEL_RGB,
                        kernels.EMBOSS_FILTER_RGB]
    else:
        kernels_list = [kernels.BLUR_FILTER,
                        kernels.SHARPEN_FILTER,
                        kernels.EDGE_FILTER,
                        kernels.TOP_SOBEL,
                        kernels.EMBOSS_FILTER]

    kernels_list = kernels_list[1:]
    image = read_one_image('data/images/naruto.jpeg')
    if not rgb:
        image = tf.image.rgb_to_grayscale(image)
    image = tf.expand_dims(image, 0) # make it into a batch of 1 element
    images = convolve(image, kernels_list, rgb)
    with tf.Session() as sess:
        images = sess.run(images) # convert images from tensors to float values
    show_images(images, rgb) 
開發者ID:wdxtub,項目名稱:deep-learning-note,代碼行數:26,代碼來源:16_basic_kernels.py

示例11: setup_graph

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Session [as 別名]
def setup_graph(self, input_audio_batch, target_phrase): 
        batch_size = input_audio_batch.shape[0]
        weird = (input_audio_batch.shape[1] - 1) // 320 
        logits_arg2 = np.tile(weird, batch_size)
        dense_arg1 = np.array(np.tile(target_phrase, (batch_size, 1)), dtype=np.int32)
        dense_arg2 = np.array(np.tile(target_phrase.shape[0], batch_size), dtype=np.int32)
        
        pass_in = np.clip(input_audio_batch, -2**15, 2**15-1)
        seq_len = np.tile(weird, batch_size).astype(np.int32)
        
        with tf.variable_scope('', reuse=tf.AUTO_REUSE):
            
            inputs = tf.placeholder(tf.float32, shape=pass_in.shape, name='a')
            len_batch = tf.placeholder(tf.float32, name='b')
            arg2_logits = tf.placeholder(tf.int32, shape=logits_arg2.shape, name='c')
            arg1_dense = tf.placeholder(tf.float32, shape=dense_arg1.shape, name='d')
            arg2_dense = tf.placeholder(tf.int32, shape=dense_arg2.shape, name='e')
            len_seq = tf.placeholder(tf.int32, shape=seq_len.shape, name='f')
            
            logits = get_logits(inputs, arg2_logits)
            target = ctc_label_dense_to_sparse(arg1_dense, arg2_dense, len_batch)
            ctcloss = tf.nn.ctc_loss(labels=tf.cast(target, tf.int32), inputs=logits, sequence_length=len_seq)
            decoded, _ = tf.nn.ctc_greedy_decoder(logits, arg2_logits, merge_repeated=True)
            
            sess = tf.Session()
            saver = tf.train.Saver(tf.global_variables())
            saver.restore(sess, "models/session_dump")
            
        func1 = lambda a, b, c, d, e, f: sess.run(ctcloss, 
            feed_dict={inputs: a, len_batch: b, arg2_logits: c, arg1_dense: d, arg2_dense: e, len_seq: f})
        func2 = lambda a, b, c, d, e, f: sess.run([ctcloss, decoded], 
            feed_dict={inputs: a, len_batch: b, arg2_logits: c, arg1_dense: d, arg2_dense: e, len_seq: f})
        return (func1, func2) 
開發者ID:rtaori,項目名稱:Black-Box-Audio,代碼行數:35,代碼來源:run_audio_attack.py

示例12: make_app

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Session [as 別名]
def make_app(model_dir):
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    config.gpu_options.per_process_gpu_memory_fraction = 1.0
    config.allow_soft_placement = True
    config.log_device_placement = True
    sess = tf.Session(config=config)
    tagger = Tagger(sess=sess, model_dir=model_dir, scope=TASK.scope, batch_size=200)
    return tornado.web.Application([
        (r"/", MainHandler),
        (r"/%s" % TASK.scope, TaskHandler, {'tagger': tagger})
    ]) 
開發者ID:chqiwang,項目名稱:convseg,代碼行數:14,代碼來源:server.py

示例13: load

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Session [as 別名]
def load(self, ckpt, ignore):
        meta = ckpt + '.meta'
        with tf.Graph().as_default() as graph:
            with tf.Session().as_default() as sess:
                saver = tf.train.import_meta_graph(meta)
                saver.restore(sess, ckpt)
                for var in tf.global_variables():
                    name = var.name.split(':')[0]
                    packet = [name, var.get_shape().as_list()]
                    self.src_key += [packet]
                    self.vals += [var.eval(sess)] 
開發者ID:AmeyaWagh,項目名稱:Traffic_sign_detection_YOLO,代碼行數:13,代碼來源:loader.py

示例14: setup_meta_ops

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Session [as 別名]
def setup_meta_ops(self):
		cfg = dict({
			'allow_soft_placement': False,
			'log_device_placement': False
		})

		utility = min(self.FLAGS.gpu, 1.)
		if utility > 0.0:
			self.say('GPU mode with {} usage'.format(utility))
			cfg['gpu_options'] = tf.GPUOptions(
				per_process_gpu_memory_fraction = utility)
			cfg['allow_soft_placement'] = True
		else: 
			self.say('Running entirely on CPU')
			cfg['device_count'] = {'GPU': 0}

		if self.FLAGS.train: self.build_train_op()
		
		if self.FLAGS.summary:
			self.summary_op = tf.summary.merge_all()
			self.writer = tf.summary.FileWriter(self.FLAGS.summary + 'train')
		
		self.sess = tf.Session(config = tf.ConfigProto(**cfg))
		self.sess.run(tf.global_variables_initializer())

		if not self.ntrain: return
		self.saver = tf.train.Saver(tf.global_variables(), 
			max_to_keep = self.FLAGS.keep)
		if self.FLAGS.load != 0: self.load_from_ckpt()
		
		if self.FLAGS.summary:
			self.writer.add_graph(self.sess.graph) 
開發者ID:AmeyaWagh,項目名稱:Traffic_sign_detection_YOLO,代碼行數:34,代碼來源:build.py

示例15: init_tf

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Session [as 別名]
def init_tf(config_dict=dict()):
    if tf.get_default_session() is None:
        tf.set_random_seed(np.random.randint(1 << 31))
        create_session(config_dict, force_as_default=True)

#----------------------------------------------------------------------------
# Create tf.Session based on config dict of the form
# {'gpu_options.allow_growth': True} 
開發者ID:zalandoresearch,項目名稱:disentangling_conditional_gans,代碼行數:10,代碼來源:tfutil.py


注:本文中的tensorflow.Session方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。