本文整理匯總了Python中tensorflow.RunOptions方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.RunOptions方法的具體用法?Python tensorflow.RunOptions怎麽用?Python tensorflow.RunOptions使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.RunOptions方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: optimize
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import RunOptions [as 別名]
def optimize(self, data, with_metrics=False, with_trace=False):
""" Optimize a single batch """
run_metadata = tf.RunMetadata() if with_trace else None
trace = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) if with_trace else None
_, metrics = self.run(
self.training_operation, data,
run_options=trace, run_metadata=run_metadata)
if with_metrics:
self.timer_update()
steps, elapsed = self.elapsed()
num_devices = len(self.towers)
examples = steps * self.batch_size * num_devices
print('Step {}, examples/sec {:.3f}, ms/batch {:.1f}'.format(
self.global_step, examples / elapsed, 1000 * elapsed / num_devices))
self.output_metrics(data, metrics)
self.write_summaries(data)
if with_trace:
step = '{}/step{}'.format(self.name, self.global_step)
self.summary_writer.add_run_metadata(run_metadata, step, global_step=self.global_step)
示例2: __init__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import RunOptions [as 別名]
def __init__(self,config):
self.config = config
self.detection_graph = tf.Graph()
self.category_index = None
self.masks = None
self._tf_config = tf.ConfigProto(allow_soft_placement=True)
self._tf_config.gpu_options.allow_growth=True
#self._tf_config.gpu_options.force_gpu_compatible=True
#self._tf_config.gpu_options.per_process_gpu_memory_fraction = 0.01
self._run_options = tf.RunOptions(trace_level=tf.RunOptions.NO_TRACE)
self._run_metadata = False
self._wait_thread = False
self._is_imageD = False
self._is_videoD = False
self._is_rosD = False
print ('> Model: {}'.format(self.config.MODEL_PATH))
示例3: testReusableAfterTimeout
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import RunOptions [as 別名]
def testReusableAfterTimeout(self):
with self.test_session() as sess:
q = tf.FIFOQueue(10, tf.float32)
dequeued_t = q.dequeue()
enqueue_op = q.enqueue(37)
with self.assertRaisesRegexp(tf.errors.DeadlineExceededError,
"Timed out waiting for notification"):
sess.run(dequeued_t, options=tf.RunOptions(timeout_in_ms=10))
with self.assertRaisesRegexp(tf.errors.DeadlineExceededError,
"Timed out waiting for notification"):
sess.run(dequeued_t, options=tf.RunOptions(timeout_in_ms=10))
sess.run(enqueue_op)
self.assertEqual(37, sess.run(dequeued_t))
示例4: testFillMissingShape
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import RunOptions [as 別名]
def testFillMissingShape(self):
a, b, y = self._BuildSmallPlaceholderlModel()
run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
run_metadata = tf.RunMetadata()
sess = tf.Session()
sess.run(y,
options=run_options,
run_metadata=run_metadata,
feed_dict={a: [[1, 2], [2, 3]],
b: [[1, 2], [2, 3]]})
graph2 = tf.Graph()
# Use copy_op_to_graph to remove shape information.
y2 = tf.contrib.copy_graph.copy_op_to_graph(y, graph2, [])
self.assertEquals('<unknown>', str(y2.get_shape()))
tf.contrib.tfprof.tfprof_logger._fill_missing_graph_shape(graph2,
run_metadata)
self.assertEquals('(2, 2)', str(y2.get_shape()))
示例5: configure_tf_session
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import RunOptions [as 別名]
def configure_tf_session(xla, timeline):
# Configure tensorflow's session
config = tf.ConfigProto()
jit_level = 0
if xla:
# Turns on XLA JIT compilation.
jit_level = tf.OptimizerOptions.ON_1
config.graph_options.optimizer_options.global_jit_level = jit_level
run_metadata = tf.RunMetadata()
# Add timeline data generation options if needed
if timeline is True:
run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
else:
run_options = None
return config, run_metadata, run_options
示例6: train
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import RunOptions [as 別名]
def train(self, sess, batch, print_pred, summary_writer, add_global, prob):
feed_dict = {self.encoder_inputs: batch.encoder_inputs,
self.encoder_inputs_length: batch.encoder_inputs_length,
self.decoder_targets: batch.decoder_targets,
self.decoder_targets_length: batch.decoder_targets_length,
self.batch_size: len(batch.encoder_inputs),
self.sampling_prob: prob}
if print_pred:
run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
_, loss, pred, summary, current_step, print_lr = sess.run([self.train_op, self.train_loss,
self.decoder_predict_train, self.train_summary, add_global, self.lr],
feed_dict=feed_dict, options=run_options)
i = np.random.randint(0, len(batch.encoder_inputs))
util.decoder_print(self.idx2word, batch.encoder_inputs[i], batch.encoder_inputs_length[i],
batch.decoder_targets[i], batch.decoder_targets_length[i], pred[i], 'yellow')
summary_writer.add_summary(summary, global_step=current_step)
else:
_, loss, current_step, print_lr = sess.run([self.train_op, self.train_loss,
add_global, self.lr], feed_dict=feed_dict)
return loss, calc_perplexity(loss), current_step, print_lr
示例7: evaluate_full_batch
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import RunOptions [as 別名]
def evaluate_full_batch(sess,model,minibatch_iter,many_runs_timeline,mode):
"""
Full batch evaluation
NOTE: HERE GCN RUNS THROUGH THE FULL GRAPH. HOWEVER, WE CALCULATE F1 SCORE
FOR VALIDATION / TEST NODES ONLY.
"""
options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
run_metadata = tf.RunMetadata()
t1 = time.time()
num_cls = minibatch_iter.class_arr.shape[-1]
feed_dict, labels = minibatch_iter.feed_dict(mode)
if args_global.timeline:
preds,loss = sess.run([model.preds, model.loss], feed_dict=feed_dict, options=options, run_metadata=run_metadata)
fetched_timeline = timeline.Timeline(run_metadata.step_stats)
chrome_trace = fetched_timeline.generate_chrome_trace_format()
many_runs_timeline.append(chrome_trace)
else:
preds,loss = sess.run([model.preds, model.loss], feed_dict=feed_dict)
node_val_test = minibatch_iter.node_val if mode=='val' else minibatch_iter.node_test
t2 = time.time()
f1_scores = calc_f1(labels[node_val_test],preds[node_val_test],model.sigmoid_loss)
return loss, f1_scores[0], f1_scores[1], (t2-t1)
示例8: _create_sessions
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import RunOptions [as 別名]
def _create_sessions(self):
config = tf.ConfigProto(allow_soft_placement=True)
if 'train' in self._required_graphs:
self._train_session = tf.Session(graph=self._train_graph, config=config)
if 'eval' in self._required_graphs:
self._evaluate_session = tf.Session(graph=self._evaluate_graph, config=config)
# self._predict_session = tf.Session(graph=self._predict_graph, config=config)
if self._hparams.profiling is True:
from tensorflow.profiler import Profiler
self.profiler = Profiler(self._train_session.graph)
self.run_meta = tf.RunMetadata()
makedirs('/tmp/timelines/', exist_ok=True)
self.sess_opts = {
'options': tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE),
'run_metadata': self.run_meta
}
else:
self.sess_opts = {}
示例9: cli_profile_timeline
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import RunOptions [as 別名]
def cli_profile_timeline(self):
"""Performs training profiling to produce timeline.json. """
# TODO integrate this into Profile.
from tensorflow.python.client import timeline
options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
run_metadata = tf.RunMetadata()
session = self._get_session('train')
# run 100 iterations to warm up
max_iterations = 100
for i in range(max_iterations):
log.info(
'Running {}/{} iterations to warm up...'
.format(i, max_iterations), update=True)
session.run(session._train_op)
log.info('Running the final iteration to generate timeline...')
session.run(
session._train_op, options=options, run_metadata=run_metadata)
fetched_timeline = timeline.Timeline(run_metadata.step_stats)
chrome_trace = fetched_timeline.generate_chrome_trace_format()
with open('timeline.json', 'w') as f:
f.write(chrome_trace)
示例10: run
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import RunOptions [as 別名]
def run(self, fetches, feed_dict=None):
"""like Session.run, but return a Timeline object in Chrome trace format (JSON).
Save the json to a file, go to chrome://tracing, and open the file.
Args:
fetches
feed_dict
Returns:
dict: a JSON dict
"""
options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
run_metadata = tf.RunMetadata()
super(ProfiledSession, self).run(fetches, feed_dict, options=options, run_metadata=run_metadata)
# Create the Timeline object, and write it to a json
tl = timeline.Timeline(run_metadata.step_stats)
ctf = tl.generate_chrome_trace_format()
return json.loads(ctf)
示例11: test_graph_tf
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import RunOptions [as 別名]
def test_graph_tf(self):
run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
run_metadata = tf.RunMetadata()
with tf.Session() as sess:
outputs = self._model_tf(
np.zeros(
shape=(
1,
28,
28,
1),
dtype=np.float32))
sess.run(tf.initializers.global_variables())
sess.run(outputs, options=run_options, run_metadata=run_metadata)
self._logger.log({"graph_tf": {
"graph": self._model_tf._graph.as_graph_def(add_shapes=True),
"run_metadata": run_metadata
}})
示例12: profile
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import RunOptions [as 別名]
def profile(self,
tensors: List[Union[tf.Tensor, tf.Operation, lt.LabeledTensor]]):
tensors = [
t.tensor if isinstance(t, lt.LabeledTensor) else t for t in tensors
]
run_metadata = tf.RunMetadata()
sv = tf.train.Supervisor(graph=tensors[0].graph)
sess = sv.PrepareSession()
sv.StartQueueRunners(sess)
results = sess.run(
tensors,
options=tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE),
run_metadata=run_metadata)
options = tf.contrib.tfprof.model_analyzer.PRINT_ALL_TIMING_MEMORY
options['viz'] = True
tf.contrib.tfprof.model_analyzer.print_model_analysis(
tf.get_default_graph(), run_meta=run_metadata, tfprof_options=options)
sv.Stop()
return results
示例13: E_val
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import RunOptions [as 別名]
def E_val(self, X):
with self.graph.as_default(), tf.device(self.energy_device):
if self.prof_run:
run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
run_metadata = tf.RunMetadata()
energy = self.sess.run(self.energy_op, feed_dict={self.state_pl: X},
options=run_options, run_metadata=run_metadata)
tf_tl = timeline.Timeline(run_metadata.step_stats)
ctf = tf_tl.generate_chrome_trace_format()
log_path = expanduser('~/tmp/logs/tf_{}_energy_timeline_{}.json'.format(self.name, time.time()))
with open(log_path, 'w') as log_file:
log_file.write(ctf)
else:
energy = self.sess.run(self.energy_op, feed_dict={self.state_pl: X})
return energy
示例14: dEdX_val
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import RunOptions [as 別名]
def dEdX_val(self, X):
with self.graph.as_default(), tf.device(self.grad_device):
if self.prof_run:
run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
run_metadata = tf.RunMetadata()
grad = self.sess.run(self.grad_op, feed_dict={self.state_pl: X},
options=run_options, run_metadata=run_metadata)
tf_tl = timeline.Timeline(run_metadata.step_stats)
ctf = tf_tl.generate_chrome_trace_format()
log_path = expanduser('~/tmp/logs/tf_{}_grad_timeline_{}.json'.format(self.name, time.time()))
with open(log_path, 'w') as log_file:
log_file.write(ctf)
else:
grad = self.sess.run(self.grad_op, feed_dict={self.state_pl: X})
return grad
示例15: log_model_analysis
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import RunOptions [as 別名]
def log_model_analysis(self):
run_metadata = tf.RunMetadata()
run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
_, loss = self.sess.run([self.optimizer, self.loss], feed_dict={self.x: self.batch_input,
self.x2: self.batch_input_bicubic,
self.y: self.batch_true,
self.lr_input: self.lr,
self.dropout: self.dropout_rate},
options=run_options, run_metadata=run_metadata)
# tf.contrib.tfprof.model_analyzer.print_model_analysis(
# tf.get_default_graph(),
# run_meta=run_metadata,
# tfprof_options=tf.contrib.tfprof.model_analyzer.PRINT_ALL_TIMING_MEMORY)
self.first_training = False