當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.RunOptions方法代碼示例

本文整理匯總了Python中tensorflow.RunOptions方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.RunOptions方法的具體用法?Python tensorflow.RunOptions怎麽用?Python tensorflow.RunOptions使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.RunOptions方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: optimize

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import RunOptions [as 別名]
def optimize(self, data, with_metrics=False, with_trace=False):
        """ Optimize a single batch """
        run_metadata = tf.RunMetadata() if with_trace else None
        trace = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) if with_trace else None

        _, metrics = self.run(
            self.training_operation, data,
            run_options=trace, run_metadata=run_metadata)

        if with_metrics:
            self.timer_update()
            steps, elapsed = self.elapsed()
            num_devices = len(self.towers)
            examples = steps * self.batch_size * num_devices
            print('Step {}, examples/sec {:.3f}, ms/batch {:.1f}'.format(
                self.global_step, examples / elapsed, 1000 * elapsed / num_devices))

            self.output_metrics(data, metrics)
            self.write_summaries(data)

        if with_trace:
            step = '{}/step{}'.format(self.name, self.global_step)
            self.summary_writer.add_run_metadata(run_metadata, step, global_step=self.global_step) 
開發者ID:dojoteef,項目名稱:dvae,代碼行數:25,代碼來源:trainer.py

示例2: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import RunOptions [as 別名]
def __init__(self,config):
        self.config = config
        self.detection_graph = tf.Graph()
        self.category_index = None
        self.masks = None
        self._tf_config = tf.ConfigProto(allow_soft_placement=True)
        self._tf_config.gpu_options.allow_growth=True
        #self._tf_config.gpu_options.force_gpu_compatible=True
        #self._tf_config.gpu_options.per_process_gpu_memory_fraction = 0.01
        self._run_options = tf.RunOptions(trace_level=tf.RunOptions.NO_TRACE)
        self._run_metadata = False
        self._wait_thread = False
        self._is_imageD = False
        self._is_videoD = False
        self._is_rosD = False
        print ('> Model: {}'.format(self.config.MODEL_PATH)) 
開發者ID:gustavz,項目名稱:realtime_object_detection,代碼行數:18,代碼來源:model.py

示例3: testReusableAfterTimeout

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import RunOptions [as 別名]
def testReusableAfterTimeout(self):
    with self.test_session() as sess:
      q = tf.FIFOQueue(10, tf.float32)
      dequeued_t = q.dequeue()
      enqueue_op = q.enqueue(37)

      with self.assertRaisesRegexp(tf.errors.DeadlineExceededError,
                                   "Timed out waiting for notification"):
        sess.run(dequeued_t, options=tf.RunOptions(timeout_in_ms=10))

      with self.assertRaisesRegexp(tf.errors.DeadlineExceededError,
                                   "Timed out waiting for notification"):
        sess.run(dequeued_t, options=tf.RunOptions(timeout_in_ms=10))

      sess.run(enqueue_op)
      self.assertEqual(37, sess.run(dequeued_t)) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:18,代碼來源:fifo_queue_test.py

示例4: testFillMissingShape

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import RunOptions [as 別名]
def testFillMissingShape(self):
    a, b, y = self._BuildSmallPlaceholderlModel()
    run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
    run_metadata = tf.RunMetadata()
    sess = tf.Session()
    sess.run(y,
             options=run_options,
             run_metadata=run_metadata,
             feed_dict={a: [[1, 2], [2, 3]],
                        b: [[1, 2], [2, 3]]})

    graph2 = tf.Graph()
    # Use copy_op_to_graph to remove shape information.
    y2 = tf.contrib.copy_graph.copy_op_to_graph(y, graph2, [])
    self.assertEquals('<unknown>', str(y2.get_shape()))

    tf.contrib.tfprof.tfprof_logger._fill_missing_graph_shape(graph2,
                                                              run_metadata)
    self.assertEquals('(2, 2)', str(y2.get_shape())) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:21,代碼來源:tfprof_logger_test.py

示例5: configure_tf_session

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import RunOptions [as 別名]
def configure_tf_session(xla, timeline):
    # Configure tensorflow's session
    config = tf.ConfigProto()
    jit_level = 0
    if xla:
        # Turns on XLA JIT compilation.
        jit_level = tf.OptimizerOptions.ON_1
    config.graph_options.optimizer_options.global_jit_level = jit_level
    run_metadata = tf.RunMetadata()

    # Add timeline data generation options if needed
    if timeline is True:
        run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
    else:
        run_options = None
    return config, run_metadata, run_options 
開發者ID:inikdom,項目名稱:rnn-speech,代碼行數:18,代碼來源:stt.py

示例6: train

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import RunOptions [as 別名]
def train(self, sess, batch, print_pred, summary_writer, add_global, prob):

        feed_dict = {self.encoder_inputs: batch.encoder_inputs,
                      self.encoder_inputs_length: batch.encoder_inputs_length,
                      self.decoder_targets: batch.decoder_targets,
                      self.decoder_targets_length: batch.decoder_targets_length,
                      self.batch_size: len(batch.encoder_inputs),
                      self.sampling_prob: prob}

        if print_pred:
            run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
            _, loss, pred, summary, current_step, print_lr = sess.run([self.train_op, self.train_loss, 
                self.decoder_predict_train, self.train_summary, add_global, self.lr], 
                feed_dict=feed_dict, options=run_options)

            i = np.random.randint(0, len(batch.encoder_inputs))
            util.decoder_print(self.idx2word, batch.encoder_inputs[i], batch.encoder_inputs_length[i],
                batch.decoder_targets[i], batch.decoder_targets_length[i], pred[i], 'yellow')
            summary_writer.add_summary(summary, global_step=current_step)
        else:
            _, loss, current_step, print_lr = sess.run([self.train_op, self.train_loss, 
                add_global, self.lr], feed_dict=feed_dict)
        return loss, calc_perplexity(loss), current_step, print_lr 
開發者ID:AdrianHsu,項目名稱:tensorflow-chatbot-chinese,代碼行數:25,代碼來源:model_seq2seq.py

示例7: evaluate_full_batch

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import RunOptions [as 別名]
def evaluate_full_batch(sess,model,minibatch_iter,many_runs_timeline,mode):
    """
    Full batch evaluation
    NOTE: HERE GCN RUNS THROUGH THE FULL GRAPH. HOWEVER, WE CALCULATE F1 SCORE
        FOR VALIDATION / TEST NODES ONLY. 
    """
    options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
    run_metadata = tf.RunMetadata()
    t1 = time.time()
    num_cls = minibatch_iter.class_arr.shape[-1]
    feed_dict, labels = minibatch_iter.feed_dict(mode)
    if args_global.timeline:
        preds,loss = sess.run([model.preds, model.loss], feed_dict=feed_dict, options=options, run_metadata=run_metadata)
        fetched_timeline = timeline.Timeline(run_metadata.step_stats)
        chrome_trace = fetched_timeline.generate_chrome_trace_format()
        many_runs_timeline.append(chrome_trace)
    else:
        preds,loss = sess.run([model.preds, model.loss], feed_dict=feed_dict)
    node_val_test = minibatch_iter.node_val if mode=='val' else minibatch_iter.node_test
    t2 = time.time()
    f1_scores = calc_f1(labels[node_val_test],preds[node_val_test],model.sigmoid_loss)
    return loss, f1_scores[0], f1_scores[1], (t2-t1) 
開發者ID:GraphSAINT,項目名稱:GraphSAINT,代碼行數:24,代碼來源:train.py

示例8: _create_sessions

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import RunOptions [as 別名]
def _create_sessions(self):
        config = tf.ConfigProto(allow_soft_placement=True)
        if 'train' in self._required_graphs:
            self._train_session = tf.Session(graph=self._train_graph, config=config)
        if 'eval' in self._required_graphs:
            self._evaluate_session = tf.Session(graph=self._evaluate_graph, config=config)
        # self._predict_session = tf.Session(graph=self._predict_graph, config=config)

        if self._hparams.profiling is True:
            from tensorflow.profiler import Profiler
            self.profiler = Profiler(self._train_session.graph)
            self.run_meta = tf.RunMetadata()
            makedirs('/tmp/timelines/', exist_ok=True)
            self.sess_opts = {
                'options': tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE),
                'run_metadata': self.run_meta
            }
        else:
            self.sess_opts = {} 
開發者ID:georgesterpu,項目名稱:avsr-tf1,代碼行數:21,代碼來源:avsr.py

示例9: cli_profile_timeline

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import RunOptions [as 別名]
def cli_profile_timeline(self):
        """Performs training profiling to produce timeline.json.  """
        # TODO integrate this into Profile.
        from tensorflow.python.client import timeline
        options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
        run_metadata = tf.RunMetadata()
        session = self._get_session('train')
        # run 100 iterations to warm up
        max_iterations = 100
        for i in range(max_iterations):
            log.info(
                'Running {}/{} iterations to warm up...'
                .format(i, max_iterations), update=True)
            session.run(session._train_op)
        log.info('Running the final iteration to generate timeline...')
        session.run(
            session._train_op, options=options, run_metadata=run_metadata)
        fetched_timeline = timeline.Timeline(run_metadata.step_stats)
        chrome_trace = fetched_timeline.generate_chrome_trace_format()
        with open('timeline.json', 'w') as f:
            f.write(chrome_trace) 
開發者ID:deep-fry,項目名稱:mayo,代碼行數:23,代碼來源:cli.py

示例10: run

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import RunOptions [as 別名]
def run(self, fetches, feed_dict=None):
        """like Session.run, but return a Timeline object in Chrome trace format (JSON).

        Save the json to a file, go to chrome://tracing, and open the file.

        Args:
            fetches
            feed_dict

        Returns:
            dict: a JSON dict
        """
        options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
        run_metadata = tf.RunMetadata()
        super(ProfiledSession, self).run(fetches, feed_dict, options=options, run_metadata=run_metadata)

        # Create the Timeline object, and write it to a json
        tl = timeline.Timeline(run_metadata.step_stats)
        ctf = tl.generate_chrome_trace_format()
        return json.loads(ctf) 
開發者ID:kelvinguu,項目名稱:lang2program,代碼行數:22,代碼來源:profile.py

示例11: test_graph_tf

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import RunOptions [as 別名]
def test_graph_tf(self):

        run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
        run_metadata = tf.RunMetadata()

        with tf.Session() as sess:
            outputs = self._model_tf(
                np.zeros(
                    shape=(
                        1,
                        28,
                        28,
                        1),
                    dtype=np.float32))
            sess.run(tf.initializers.global_variables())
            sess.run(outputs, options=run_options, run_metadata=run_metadata)

        self._logger.log({"graph_tf": {
            "graph": self._model_tf._graph.as_graph_def(add_shapes=True),
            "run_metadata": run_metadata
        }}) 
開發者ID:delira-dev,項目名稱:delira,代碼行數:23,代碼來源:test_single_threaded_logging.py

示例12: profile

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import RunOptions [as 別名]
def profile(self,
              tensors: List[Union[tf.Tensor, tf.Operation, lt.LabeledTensor]]):
    tensors = [
        t.tensor if isinstance(t, lt.LabeledTensor) else t for t in tensors
    ]

    run_metadata = tf.RunMetadata()
    sv = tf.train.Supervisor(graph=tensors[0].graph)
    sess = sv.PrepareSession()
    sv.StartQueueRunners(sess)

    results = sess.run(
        tensors,
        options=tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE),
        run_metadata=run_metadata)

    options = tf.contrib.tfprof.model_analyzer.PRINT_ALL_TIMING_MEMORY
    options['viz'] = True
    tf.contrib.tfprof.model_analyzer.print_model_analysis(
        tf.get_default_graph(), run_meta=run_metadata, tfprof_options=options)

    sv.Stop()

    return results 
開發者ID:google,項目名稱:in-silico-labeling,代碼行數:26,代碼來源:test_util.py

示例13: E_val

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import RunOptions [as 別名]
def E_val(self, X):
        with self.graph.as_default(), tf.device(self.energy_device):
            if self.prof_run:
                run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
                run_metadata = tf.RunMetadata()

                energy = self.sess.run(self.energy_op, feed_dict={self.state_pl: X},
                                       options=run_options, run_metadata=run_metadata)
                tf_tl  = timeline.Timeline(run_metadata.step_stats)
                ctf = tf_tl.generate_chrome_trace_format()
                log_path = expanduser('~/tmp/logs/tf_{}_energy_timeline_{}.json'.format(self.name, time.time()))
                with open(log_path, 'w') as log_file:
                    log_file.write(ctf)
            else:
                energy = self.sess.run(self.energy_op, feed_dict={self.state_pl: X})
            return energy 
開發者ID:rueberger,項目名稱:MJHMC,代碼行數:18,代碼來源:tf_distributions.py

示例14: dEdX_val

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import RunOptions [as 別名]
def dEdX_val(self, X):
        with self.graph.as_default(), tf.device(self.grad_device):
            if self.prof_run:
                run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
                run_metadata = tf.RunMetadata()

                grad = self.sess.run(self.grad_op, feed_dict={self.state_pl: X},
                                       options=run_options, run_metadata=run_metadata)

                tf_tl  = timeline.Timeline(run_metadata.step_stats)
                ctf = tf_tl.generate_chrome_trace_format()
                log_path = expanduser('~/tmp/logs/tf_{}_grad_timeline_{}.json'.format(self.name, time.time()))
                with open(log_path, 'w') as log_file:
                    log_file.write(ctf)
            else:
                grad = self.sess.run(self.grad_op, feed_dict={self.state_pl: X})
            return grad 
開發者ID:rueberger,項目名稱:MJHMC,代碼行數:19,代碼來源:tf_distributions.py

示例15: log_model_analysis

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import RunOptions [as 別名]
def log_model_analysis(self):
        run_metadata = tf.RunMetadata()
        run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)

        _, loss = self.sess.run([self.optimizer, self.loss], feed_dict={self.x: self.batch_input,
                                                                        self.x2: self.batch_input_bicubic,
                                                                        self.y: self.batch_true,
                                                                        self.lr_input: self.lr,
                                                                        self.dropout: self.dropout_rate},
                                options=run_options, run_metadata=run_metadata)

        # tf.contrib.tfprof.model_analyzer.print_model_analysis(
        #   tf.get_default_graph(),
        #   run_meta=run_metadata,
        #   tfprof_options=tf.contrib.tfprof.model_analyzer.PRINT_ALL_TIMING_MEMORY)
        self.first_training = False 
開發者ID:jiny2001,項目名稱:dcscn-super-resolution,代碼行數:18,代碼來源:DCSCN.py


注:本文中的tensorflow.RunOptions方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。