當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.RunMetadata方法代碼示例

本文整理匯總了Python中tensorflow.RunMetadata方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.RunMetadata方法的具體用法?Python tensorflow.RunMetadata怎麽用?Python tensorflow.RunMetadata使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.RunMetadata方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: optimize

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import RunMetadata [as 別名]
def optimize(self, data, with_metrics=False, with_trace=False):
        """ Optimize a single batch """
        run_metadata = tf.RunMetadata() if with_trace else None
        trace = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) if with_trace else None

        _, metrics = self.run(
            self.training_operation, data,
            run_options=trace, run_metadata=run_metadata)

        if with_metrics:
            self.timer_update()
            steps, elapsed = self.elapsed()
            num_devices = len(self.towers)
            examples = steps * self.batch_size * num_devices
            print('Step {}, examples/sec {:.3f}, ms/batch {:.1f}'.format(
                self.global_step, examples / elapsed, 1000 * elapsed / num_devices))

            self.output_metrics(data, metrics)
            self.write_summaries(data)

        if with_trace:
            step = '{}/step{}'.format(self.name, self.global_step)
            self.summary_writer.add_run_metadata(run_metadata, step, global_step=self.global_step) 
開發者ID:dojoteef,項目名稱:dvae,代碼行數:25,代碼來源:trainer.py

示例2: testFillMissingShape

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import RunMetadata [as 別名]
def testFillMissingShape(self):
    a, b, y = self._BuildSmallPlaceholderlModel()
    run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
    run_metadata = tf.RunMetadata()
    sess = tf.Session()
    sess.run(y,
             options=run_options,
             run_metadata=run_metadata,
             feed_dict={a: [[1, 2], [2, 3]],
                        b: [[1, 2], [2, 3]]})

    graph2 = tf.Graph()
    # Use copy_op_to_graph to remove shape information.
    y2 = tf.contrib.copy_graph.copy_op_to_graph(y, graph2, [])
    self.assertEquals('<unknown>', str(y2.get_shape()))

    tf.contrib.tfprof.tfprof_logger._fill_missing_graph_shape(graph2,
                                                              run_metadata)
    self.assertEquals('(2, 2)', str(y2.get_shape())) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:21,代碼來源:tfprof_logger_test.py

示例3: configure_tf_session

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import RunMetadata [as 別名]
def configure_tf_session(xla, timeline):
    # Configure tensorflow's session
    config = tf.ConfigProto()
    jit_level = 0
    if xla:
        # Turns on XLA JIT compilation.
        jit_level = tf.OptimizerOptions.ON_1
    config.graph_options.optimizer_options.global_jit_level = jit_level
    run_metadata = tf.RunMetadata()

    # Add timeline data generation options if needed
    if timeline is True:
        run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
    else:
        run_options = None
    return config, run_metadata, run_options 
開發者ID:inikdom,項目名稱:rnn-speech,代碼行數:18,代碼來源:stt.py

示例4: evaluate_full_batch

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import RunMetadata [as 別名]
def evaluate_full_batch(sess,model,minibatch_iter,many_runs_timeline,mode):
    """
    Full batch evaluation
    NOTE: HERE GCN RUNS THROUGH THE FULL GRAPH. HOWEVER, WE CALCULATE F1 SCORE
        FOR VALIDATION / TEST NODES ONLY. 
    """
    options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
    run_metadata = tf.RunMetadata()
    t1 = time.time()
    num_cls = minibatch_iter.class_arr.shape[-1]
    feed_dict, labels = minibatch_iter.feed_dict(mode)
    if args_global.timeline:
        preds,loss = sess.run([model.preds, model.loss], feed_dict=feed_dict, options=options, run_metadata=run_metadata)
        fetched_timeline = timeline.Timeline(run_metadata.step_stats)
        chrome_trace = fetched_timeline.generate_chrome_trace_format()
        many_runs_timeline.append(chrome_trace)
    else:
        preds,loss = sess.run([model.preds, model.loss], feed_dict=feed_dict)
    node_val_test = minibatch_iter.node_val if mode=='val' else minibatch_iter.node_test
    t2 = time.time()
    f1_scores = calc_f1(labels[node_val_test],preds[node_val_test],model.sigmoid_loss)
    return loss, f1_scores[0], f1_scores[1], (t2-t1) 
開發者ID:GraphSAINT,項目名稱:GraphSAINT,代碼行數:24,代碼來源:train.py

示例5: _create_sessions

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import RunMetadata [as 別名]
def _create_sessions(self):
        config = tf.ConfigProto(allow_soft_placement=True)
        if 'train' in self._required_graphs:
            self._train_session = tf.Session(graph=self._train_graph, config=config)
        if 'eval' in self._required_graphs:
            self._evaluate_session = tf.Session(graph=self._evaluate_graph, config=config)
        # self._predict_session = tf.Session(graph=self._predict_graph, config=config)

        if self._hparams.profiling is True:
            from tensorflow.profiler import Profiler
            self.profiler = Profiler(self._train_session.graph)
            self.run_meta = tf.RunMetadata()
            makedirs('/tmp/timelines/', exist_ok=True)
            self.sess_opts = {
                'options': tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE),
                'run_metadata': self.run_meta
            }
        else:
            self.sess_opts = {} 
開發者ID:georgesterpu,項目名稱:avsr-tf1,代碼行數:21,代碼來源:avsr.py

示例6: cli_profile_timeline

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import RunMetadata [as 別名]
def cli_profile_timeline(self):
        """Performs training profiling to produce timeline.json.  """
        # TODO integrate this into Profile.
        from tensorflow.python.client import timeline
        options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
        run_metadata = tf.RunMetadata()
        session = self._get_session('train')
        # run 100 iterations to warm up
        max_iterations = 100
        for i in range(max_iterations):
            log.info(
                'Running {}/{} iterations to warm up...'
                .format(i, max_iterations), update=True)
            session.run(session._train_op)
        log.info('Running the final iteration to generate timeline...')
        session.run(
            session._train_op, options=options, run_metadata=run_metadata)
        fetched_timeline = timeline.Timeline(run_metadata.step_stats)
        chrome_trace = fetched_timeline.generate_chrome_trace_format()
        with open('timeline.json', 'w') as f:
            f.write(chrome_trace) 
開發者ID:deep-fry,項目名稱:mayo,代碼行數:23,代碼來源:cli.py

示例7: run

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import RunMetadata [as 別名]
def run(self, fetches, feed_dict=None):
        """like Session.run, but return a Timeline object in Chrome trace format (JSON).

        Save the json to a file, go to chrome://tracing, and open the file.

        Args:
            fetches
            feed_dict

        Returns:
            dict: a JSON dict
        """
        options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
        run_metadata = tf.RunMetadata()
        super(ProfiledSession, self).run(fetches, feed_dict, options=options, run_metadata=run_metadata)

        # Create the Timeline object, and write it to a json
        tl = timeline.Timeline(run_metadata.step_stats)
        ctf = tl.generate_chrome_trace_format()
        return json.loads(ctf) 
開發者ID:kelvinguu,項目名稱:lang2program,代碼行數:22,代碼來源:profile.py

示例8: test_graph_tf

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import RunMetadata [as 別名]
def test_graph_tf(self):

        run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
        run_metadata = tf.RunMetadata()

        with tf.Session() as sess:
            outputs = self._model_tf(
                np.zeros(
                    shape=(
                        1,
                        28,
                        28,
                        1),
                    dtype=np.float32))
            sess.run(tf.initializers.global_variables())
            sess.run(outputs, options=run_options, run_metadata=run_metadata)

        self._logger.log({"graph_tf": {
            "graph": self._model_tf._graph.as_graph_def(add_shapes=True),
            "run_metadata": run_metadata
        }}) 
開發者ID:delira-dev,項目名稱:delira,代碼行數:23,代碼來源:test_single_threaded_logging.py

示例9: profile

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import RunMetadata [as 別名]
def profile(self,
              tensors: List[Union[tf.Tensor, tf.Operation, lt.LabeledTensor]]):
    tensors = [
        t.tensor if isinstance(t, lt.LabeledTensor) else t for t in tensors
    ]

    run_metadata = tf.RunMetadata()
    sv = tf.train.Supervisor(graph=tensors[0].graph)
    sess = sv.PrepareSession()
    sv.StartQueueRunners(sess)

    results = sess.run(
        tensors,
        options=tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE),
        run_metadata=run_metadata)

    options = tf.contrib.tfprof.model_analyzer.PRINT_ALL_TIMING_MEMORY
    options['viz'] = True
    tf.contrib.tfprof.model_analyzer.print_model_analysis(
        tf.get_default_graph(), run_meta=run_metadata, tfprof_options=options)

    sv.Stop()

    return results 
開發者ID:google,項目名稱:in-silico-labeling,代碼行數:26,代碼來源:test_util.py

示例10: E_val

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import RunMetadata [as 別名]
def E_val(self, X):
        with self.graph.as_default(), tf.device(self.energy_device):
            if self.prof_run:
                run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
                run_metadata = tf.RunMetadata()

                energy = self.sess.run(self.energy_op, feed_dict={self.state_pl: X},
                                       options=run_options, run_metadata=run_metadata)
                tf_tl  = timeline.Timeline(run_metadata.step_stats)
                ctf = tf_tl.generate_chrome_trace_format()
                log_path = expanduser('~/tmp/logs/tf_{}_energy_timeline_{}.json'.format(self.name, time.time()))
                with open(log_path, 'w') as log_file:
                    log_file.write(ctf)
            else:
                energy = self.sess.run(self.energy_op, feed_dict={self.state_pl: X})
            return energy 
開發者ID:rueberger,項目名稱:MJHMC,代碼行數:18,代碼來源:tf_distributions.py

示例11: dEdX_val

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import RunMetadata [as 別名]
def dEdX_val(self, X):
        with self.graph.as_default(), tf.device(self.grad_device):
            if self.prof_run:
                run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
                run_metadata = tf.RunMetadata()

                grad = self.sess.run(self.grad_op, feed_dict={self.state_pl: X},
                                       options=run_options, run_metadata=run_metadata)

                tf_tl  = timeline.Timeline(run_metadata.step_stats)
                ctf = tf_tl.generate_chrome_trace_format()
                log_path = expanduser('~/tmp/logs/tf_{}_grad_timeline_{}.json'.format(self.name, time.time()))
                with open(log_path, 'w') as log_file:
                    log_file.write(ctf)
            else:
                grad = self.sess.run(self.grad_op, feed_dict={self.state_pl: X})
            return grad 
開發者ID:rueberger,項目名稱:MJHMC,代碼行數:19,代碼來源:tf_distributions.py

示例12: log_model_analysis

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import RunMetadata [as 別名]
def log_model_analysis(self):
        run_metadata = tf.RunMetadata()
        run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)

        _, loss = self.sess.run([self.optimizer, self.loss], feed_dict={self.x: self.batch_input,
                                                                        self.x2: self.batch_input_bicubic,
                                                                        self.y: self.batch_true,
                                                                        self.lr_input: self.lr,
                                                                        self.dropout: self.dropout_rate},
                                options=run_options, run_metadata=run_metadata)

        # tf.contrib.tfprof.model_analyzer.print_model_analysis(
        #   tf.get_default_graph(),
        #   run_meta=run_metadata,
        #   tfprof_options=tf.contrib.tfprof.model_analyzer.PRINT_ALL_TIMING_MEMORY)
        self.first_training = False 
開發者ID:jiny2001,項目名稱:dcscn-super-resolution,代碼行數:18,代碼來源:DCSCN.py

示例13: profiled_run

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import RunMetadata [as 別名]
def profiled_run(sess, ops, feed_dict, is_profiling=False, log_dir=None):
    if not is_profiling:
        return sess.run(ops, feed_dict=feed_dict)
    else:
        if log_dir is None:
            raise ValueError("You need to provide a log_dir for profiling.")
        run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
        run_metadata = tf.RunMetadata()
        outputs = sess.run(ops, feed_dict=feed_dict, options=run_options, run_metadata=run_metadata)

        # Create the Timeline object, and write it to a json
        tl = timeline.Timeline(run_metadata.step_stats)
        ctf = tl.generate_chrome_trace_format()
        with open(os.path.join(log_dir, 'timeline.json'), 'w') as f:
            f.write(ctf)

        return outputs 
開發者ID:ElementAI,項目名稱:am3,代碼行數:19,代碼來源:util.py

示例14: run_and_fetch_metadata

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import RunMetadata [as 別名]
def run_and_fetch_metadata(fetches, sess):
    print('*** Adding metadata...')
    run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
    run_metadata = tf.RunMetadata()
    return sess.run(fetches, options=run_options, run_metadata=run_metadata), run_metadata 
開發者ID:fab-jul,項目名稱:imgcomp-cvpr,代碼行數:7,代碼來源:train.py

示例15: run_with_location_trace

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import RunMetadata [as 別名]
def run_with_location_trace(self, sess, op):
    run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
    run_metadata = tf.RunMetadata()
    sess.run(op, options=run_options, run_metadata=run_metadata)
    for device in run_metadata.step_stats.dev_stats:
        print(device.device)
        for node in device.node_stats:
            print("  ", node.node_name) 
開發者ID:rec-agent,項目名稱:rec-rl,代碼行數:10,代碼來源:util.py


注:本文中的tensorflow.RunMetadata方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。