當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.Record方法代碼示例

本文整理匯總了Python中tensorflow.Record方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.Record方法的具體用法?Python tensorflow.Record怎麽用?Python tensorflow.Record使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.Record方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: parse_args

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Record [as 別名]
def parse_args():
    msg = "convert inputs to tf.Record format"
    usage = "input_converter.py [<args>] [-h | --help]"
    parser = argparse.ArgumentParser(description=msg, usage=usage)

    parser.add_argument("--input", required=True, type=str, nargs=2,
                        help="Path of input file")
    parser.add_argument("--output_name", required=True, type=str,
                        help="Output name")
    parser.add_argument("--output_dir", required=True, type=str,
                        help="Output directory")
    parser.add_argument("--vocab", nargs=2, required=True, type=str,
                        help="Path of vocabulary")
    parser.add_argument("--num_shards", default=100, type=int,
                        help="Number of output shards")
    parser.add_argument("--shuffle", action="store_true",
                        help="Shuffle inputs")
    parser.add_argument("--unk", default="<unk>", type=str,
                        help="Unknown word symbol")
    parser.add_argument("--eos", default="<eos>", type=str,
                        help="End of sentence symbol")

    return parser.parse_args() 
開發者ID:THUNLP-MT,項目名稱:THUMT,代碼行數:25,代碼來源:input_converter.py

示例2: shuffle_tf_examples

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Record [as 別名]
def shuffle_tf_examples(gather_size, records_to_shuffle):
    '''Read through tf.Record and yield shuffled, but unparsed tf.Examples

    Args:
        gather_size: The number of tf.Examples to be gathered together
        records_to_shuffle: A list of filenames
    Returns:
        An iterator yielding lists of bytes, which are serialized tf.Examples.
    '''
    dataset = read_tf_records(gather_size, records_to_shuffle, num_repeats=1)
    batch = dataset.make_one_shot_iterator().get_next()
    sess = tf.Session()
    while True:
        try:
            result = sess.run(batch)
            yield list(result)
        except tf.errors.OutOfRangeError:
            break 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:20,代碼來源:preprocessing.py

示例3: parse_args

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Record [as 別名]
def parse_args(args=None):
    parser = argparse.ArgumentParser(
        description="Training neural machine translation models",
        usage="trainer.py [<args>] [-h | --help]"
    )

    # input files
    parser.add_argument("--input", type=str, nargs=2,
                        help="Path of source and target corpus")
    parser.add_argument("--record", type=str,
                        help="Path to tf.Record data")
    parser.add_argument("--output", type=str, default="train",
                        help="Path to saved models")
    parser.add_argument("--vocabulary", type=str, nargs=2,
                        help="Path of source and target vocabulary")
    parser.add_argument("--validation", type=str,
                        help="Path of validation file")
    parser.add_argument("--references", type=str, nargs="+",
                        help="Path of reference files")
    parser.add_argument("--checkpoint", type=str,
                        help="Path to pre-trained checkpoint")
    parser.add_argument("--half", action="store_true",
                        help="Enable FP16 training")
    parser.add_argument("--distribute", action="store_true",
                        help="Enable distributed training")

    # model and configuration
    parser.add_argument("--model", type=str, required=True,
                        help="Name of the model")
    parser.add_argument("--parameters", type=str, default="",
                        help="Additional hyper parameters")

    return parser.parse_args(args) 
開發者ID:THUNLP-MT,項目名稱:THUMT,代碼行數:35,代碼來源:trainer.py

示例4: parse_args

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Record [as 別名]
def parse_args(args=None):
    parser = argparse.ArgumentParser(
        description="Training neural machine translation models",
        usage="trainer.py [<args>] [-h | --help]"
    )

    # input files
    parser.add_argument("--input", type=str, nargs=2,
                        help="Path of source and target corpus")
    parser.add_argument("--record", type=str,
                        help="Path to tf.Record data")
    parser.add_argument("--output", type=str, default="train",
                        help="Path to saved models")
    parser.add_argument("--vocabulary", type=str, nargs=2,
                        help="Path of source and target vocabulary")
    parser.add_argument("--validation", type=str,
                        help="Path of validation file")
    parser.add_argument("--references", type=str, nargs="+",
                        help="Path of reference files")

    # model and configuration
    parser.add_argument("--model", type=str, required=True,
                        help="Name of the model")
    parser.add_argument("--parameters", type=str, default="",
                        help="Additional hyper parameters")

    return parser.parse_args(args) 
開發者ID:XMUNLP,項目名稱:XMUNMT,代碼行數:29,代碼來源:trainer.py

示例5: parse_args

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Record [as 別名]
def parse_args(args=None):
    parser = argparse.ArgumentParser(
        description="Training neural machine translation models",
        usage="trainer.py [<args>] [-h | --help]"
    )

    # input files
    parser.add_argument("--input", type=str, nargs=2,
                        help="Path of source and target corpus")
    parser.add_argument("--context", type=str,
                        help="Path of context corpus")
    parser.add_argument("--record", type=str,
                        help="Path to tf.Record data")
    parser.add_argument("--output", type=str, default="train",
                        help="Path to saved models")
    parser.add_argument("--vocabulary", type=str, nargs=2,
                        help="Path of source and target vocabulary")
    parser.add_argument("--validation", type=str,
                        help="Path of validation file")
    parser.add_argument("--references", type=str, nargs="+",
                        help="Path of reference files")

    # model and configuration
    parser.add_argument("--model", type=str, required=True,
                        help="Name of the model")
    parser.add_argument("--parameters", type=str, default="",
                        help="Additional hyper parameters")

    return parser.parse_args(args) 
開發者ID:THUNLP-MT,項目名稱:Document-Transformer,代碼行數:31,代碼來源:trainer_ctx.py

示例6: validate_spectra_array_contents

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Record [as 別名]
def validate_spectra_array_contents(record_path_name, hparams,
                                    spectra_array_path_name):
  """Checks that np.array containing spectra matches contents of record.

  Args:
    record_path_name: pathname to tf.Record file matching np.array
    hparams: See get_dataset_from_record
    spectra_array_path_name : pathname to spectra np.array.
  Raises:
    ValueError: if values in np.array stored at spectra_array_path_name
       does not match the spectra values in the TFRecord stored in the
       record_path_name.
  """
  dataset = get_dataset_from_record(
      [record_path_name],
      hparams,
      mode=tf.estimator.ModeKeys.EVAL,
      all_data_in_one_batch=True)

  feature_names = [fmap_constants.DENSE_MASS_SPEC]
  label_names = [fmap_constants.INDEX_TO_GROUND_TRUTH_ARRAY]

  features, labels = make_features_and_labels(
      dataset, feature_names, label_names, mode=tf.estimator.ModeKeys.EVAL)

  with tf.Session() as sess:
    feature_values, label_values = sess.run([features, labels])

  spectra_array = load_training_spectra_array(spectra_array_path_name)

  for i in range(np.shape(spectra_array)[0]):
    test_idx = label_values[fmap_constants.INDEX_TO_GROUND_TRUTH_ARRAY][i]
    spectra_from_dataset = feature_values[fmap_constants.DENSE_MASS_SPEC][
        test_idx, :]
    spectra_from_array = spectra_array[test_idx, :]

    if not all(spectra_from_dataset.flatten() == spectra_from_array.flatten()):
      raise ValueError('np.array of spectra stored at {} does not match spectra'
                       ' values in tf.Record {}'.format(spectra_array_path_name,
                                                        record_path_name))
  return 
開發者ID:brain-research,項目名稱:deep-molecular-massspec,代碼行數:43,代碼來源:parse_sdf_utils.py

示例7: create_tf_record_for_visualwakewords_dataset

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Record [as 別名]
def create_tf_record_for_visualwakewords_dataset(annotations_file, image_dir,
                                                 output_path, num_shards):
  """Loads Visual WakeWords annotations/images and converts to tf.Record format.

  Args:
    annotations_file: JSON file containing bounding box annotations.
    image_dir: Directory containing the image files.
    output_path: Path to output tf.Record file.
    num_shards: number of output file shards.
  """
  with contextlib2.ExitStack() as tf_record_close_stack, \
      tf.gfile.GFile(annotations_file, 'r') as fid:
    output_tfrecords = dataset_utils.open_sharded_output_tfrecords(
        tf_record_close_stack, output_path, num_shards)
    groundtruth_data = json.load(fid)
    images = groundtruth_data['images']
    annotations_index = groundtruth_data['annotations']
    annotations_index = {int(k): v for k, v in annotations_index.iteritems()}
    # convert 'unicode' key to 'int' key after we parse the json file

    for idx, image in enumerate(images):
      if idx % 100 == 0:
        tf.logging.info('On image %d of %d', idx, len(images))
      annotations = annotations_index[image['id']]
      tf_example = _create_tf_example(image, annotations, image_dir)
      shard_idx = idx % num_shards
      output_tfrecords[shard_idx].write(tf_example.SerializeToString()) 
開發者ID:microsoft,項目名稱:DirectML,代碼行數:29,代碼來源:download_and_convert_visualwakewords_lib.py

示例8: _create_tf_record_from_coco_annotations

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Record [as 別名]
def _create_tf_record_from_coco_annotations(
    annotations_file, image_dir, output_path, include_masks, num_shards):
  """Loads COCO annotation json files and converts to tf.Record format.

  Args:
    annotations_file: JSON file containing bounding box annotations.
    image_dir: Directory containing the image files.
    output_path: Path to output tf.Record file.
    include_masks: Whether to include instance segmentations masks
      (PNG encoded) in the result. default: False.
    num_shards: number of output file shards.
  """
  with contextlib2.ExitStack() as tf_record_close_stack, \
      tf.gfile.GFile(annotations_file, 'r') as fid:
    output_tfrecords = tf_record_creation_util.open_sharded_output_tfrecords(
        tf_record_close_stack, output_path, num_shards)
    groundtruth_data = json.load(fid)
    images = groundtruth_data['images']
    category_index = label_map_util.create_category_index(
        groundtruth_data['categories'])

    annotations_index = {}
    if 'annotations' in groundtruth_data:
      tf.logging.info(
          'Found groundtruth annotations. Building annotations index.')
      for annotation in groundtruth_data['annotations']:
        image_id = annotation['image_id']
        if image_id not in annotations_index:
          annotations_index[image_id] = []
        annotations_index[image_id].append(annotation)
    missing_annotation_count = 0
    for image in images:
      image_id = image['id']
      if image_id not in annotations_index:
        missing_annotation_count += 1
        annotations_index[image_id] = []
    tf.logging.info('%d images are missing annotations.',
                    missing_annotation_count)

    total_num_annotations_skipped = 0
    for idx, image in enumerate(images):
      if idx % 100 == 0:
        tf.logging.info('On image %d of %d', idx, len(images))
      annotations_list = annotations_index[image['id']]
      _, tf_example, num_annotations_skipped = create_tf_example(
          image, annotations_list, image_dir, category_index, include_masks)
      total_num_annotations_skipped += num_annotations_skipped
      shard_idx = idx % num_shards
      output_tfrecords[shard_idx].write(tf_example.SerializeToString())
    tf.logging.info('Finished writing, skipped %d annotations.',
                    total_num_annotations_skipped) 
開發者ID:ahmetozlu,項目名稱:vehicle_counting_tensorflow,代碼行數:53,代碼來源:create_coco_tf_record.py

示例9: _make_training_input_fn

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Record [as 別名]
def _make_training_input_fn(tft_working_dir,
                            filebase,
                            num_epochs=None,
                            shuffle=True,
                            batch_size=200,
                            buffer_size=None,
                            prefetch_buffer_size=1):
  """Creates an input function reading from transformed data.

  Args:
    tft_working_dir: Directory to read transformed data and metadata from and to
      write exported model to.
    filebase: Base filename (relative to `tft_working_dir`) of examples.
    num_epochs: int how many times through to read the data. If None will loop
      through data indefinitely
    shuffle: bool, whether or not to randomize the order of data. Controls
      randomization of both file order and line order within files.
    batch_size: Batch size
    buffer_size: Buffer size for the shuffle
    prefetch_buffer_size: Number of example to prefetch

  Returns:
    The input function for training or eval.
  """
  if buffer_size is None:
    buffer_size = 2 * batch_size + 1

  # Examples have already been transformed so we only need the feature_columns
  # to parse the single the tf.Record

  transformed_metadata = metadata_io.read_metadata(
      os.path.join(tft_working_dir, transform_fn_io.TRANSFORMED_METADATA_DIR))
  transformed_feature_spec = transformed_metadata.schema.as_feature_spec()

  def parser(record):
    """Help function to parse tf.Example."""
    parsed = tf.parse_single_example(record, transformed_feature_spec)
    label = parsed.pop(LABEL_KEY)
    return parsed, label

  def input_fn():
    """Input function for training and eval."""
    files = tf.data.Dataset.list_files(
        os.path.join(tft_working_dir, filebase + '*'))
    dataset = files.interleave(
        tf.data.TFRecordDataset, cycle_length=4, block_length=16)
    dataset = dataset.map(parser)

    if shuffle:
      dataset = dataset.shuffle(buffer_size)

    dataset = dataset.repeat(num_epochs)
    dataset = dataset.batch(batch_size)

    dataset = dataset.prefetch(prefetch_buffer_size)
    iterator = dataset.make_one_shot_iterator()
    transformed_features, transformed_labels = iterator.get_next()

    return transformed_features, transformed_labels

  return input_fn 
開發者ID:GoogleCloudPlatform,項目名稱:cloudml-samples,代碼行數:63,代碼來源:model.py

示例10: _create_tf_record_from_coco_annotations

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Record [as 別名]
def _create_tf_record_from_coco_annotations(
    annotations_file, image_dir, output_path, include_masks):
  """Loads COCO annotation json files and converts to tf.Record format.

  Args:
    annotations_file: JSON file containing bounding box annotations.
    image_dir: Directory containing the image files.
    output_path: Path to output tf.Record file.
    include_masks: Whether to include instance segmentations masks
      (PNG encoded) in the result. default: False.
  """
  with tf.gfile.GFile(annotations_file, 'r') as fid:
    groundtruth_data = json.load(fid)
    images = groundtruth_data['images']
    category_index = label_map_util.create_category_index(
        groundtruth_data['categories'])

    annotations_index = {}
    if 'annotations' in groundtruth_data:
      tf.logging.info(
          'Found groundtruth annotations. Building annotations index.')
      for annotation in groundtruth_data['annotations']:
        image_id = annotation['image_id']
        if image_id not in annotations_index:
          annotations_index[image_id] = []
        annotations_index[image_id].append(annotation)
    missing_annotation_count = 0
    for image in images:
      image_id = image['id']
      if image_id not in annotations_index:
        missing_annotation_count += 1
        annotations_index[image_id] = []
    tf.logging.info('%d images are missing annotations.',
                    missing_annotation_count)

    tf.logging.info('writing to output path: %s', output_path)
    writer = tf.python_io.TFRecordWriter(output_path)
    total_num_annotations_skipped = 0
    for idx, image in enumerate(images):
      if idx % 100 == 0:
        tf.logging.info('On image %d of %d', idx, len(images))
      annotations_list = annotations_index[image['id']]
      _, tf_example, num_annotations_skipped = create_tf_example(
          image, annotations_list, image_dir, category_index, include_masks)
      total_num_annotations_skipped += num_annotations_skipped
      writer.write(tf_example.SerializeToString())
    writer.close()
    tf.logging.info('Finished writing, skipped %d annotations.',
                    total_num_annotations_skipped) 
開發者ID:cagbal,項目名稱:ros_people_object_detection_tensorflow,代碼行數:51,代碼來源:create_coco_tf_record.py

示例11: _create_tf_record_from_coco_annotations

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Record [as 別名]
def _create_tf_record_from_coco_annotations(
    object_annotations_file,
    caption_annotations_file,
    image_dir, output_path, include_masks, num_shards):
  """Loads COCO annotation json files and converts to tf.Record format.

  Args:
    object_annotations_file: JSON file containing bounding box annotations.
    caption_annotations_file: JSON file containing caption annotations.
    image_dir: Directory containing the image files.
    output_path: Path to output tf.Record file.
    include_masks: Whether to include instance segmentations masks
      (PNG encoded) in the result. default: False.
    num_shards: Number of output files to create.
  """

  tf.logging.info('writing to output path: %s', output_path)
  writers = [
      tf.python_io.TFRecordWriter(output_path + '-%05d-of-%05d.tfrecord' %
                                  (i, num_shards)) for i in range(num_shards)
  ]

  images, img_to_obj_annotation, category_index = (
      _load_object_annotations(object_annotations_file))
  img_to_caption_annotation = (
      _load_caption_annotations(caption_annotations_file))

  pool = multiprocessing.Pool()
  total_num_annotations_skipped = 0
  for idx, (_, tf_example, num_annotations_skipped) in enumerate(
      pool.imap(_pool_create_tf_example,
                [(image,
                  img_to_obj_annotation[image['id']],
                  img_to_caption_annotation[image['id']],
                  image_dir,
                  category_index,
                  include_masks)
                 for image in images])):
    if idx % 100 == 0:
      tf.logging.info('On image %d of %d', idx, len(images))

    total_num_annotations_skipped += num_annotations_skipped
    writers[idx % num_shards].write(tf_example.SerializeToString())

  pool.close()
  pool.join()

  for writer in writers:
    writer.close()

  tf.logging.info('Finished writing, skipped %d annotations.',
                  total_num_annotations_skipped) 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:54,代碼來源:create_coco_tf_record.py

示例12: write_dicts_to_example

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Record [as 別名]
def write_dicts_to_example(mol_list,
                           record_path_name,
                           max_atoms,
                           max_mass_spec_peak_loc,
                           true_library_array_path_name=None):
  """Helper function for writing tf.record from all examples.

  Uses dict_to_tfexample to write the actual tf.example

  Args:
    mol_list : list of rdkit.Mol objects
    record_path_name : file name for storing tf record
    max_atoms : max. number of atoms to consider in a molecule.
    max_mass_spec_peak_loc : largest mass/charge ratio to allow in a spectra
    true_library_array_path_name: path for storing np.array of true spectra

  Returns:
    - Writes tf.Record of an example for each eligible molecule
    (i.e. # atoms < max_atoms)
    - Writes np.array (len(mol_list), max_mass_spec_peak_loc) to
      true_library_array_path_name if it is defined.
  """
  options = tf.python_io.TFRecordOptions(
      tf.python_io.TFRecordCompressionType.ZLIB)

  # Wrapper function to add index value to dictionary
  if true_library_array_path_name:
    spectra_matrix = np.zeros((len(mol_list), max_mass_spec_peak_loc))

    def make_mol_dict_with_saved_array(idx, mol):
      mol_dict = make_mol_dict(mol, max_atoms, max_mass_spec_peak_loc)
      mol_dict[fmap_constants.INDEX_TO_GROUND_TRUTH_ARRAY] = idx
      spectra_matrix[idx, :] = mol_dict[fmap_constants.DENSE_MASS_SPEC]
      return mol_dict

    make_mol_dict_fn = make_mol_dict_with_saved_array

  else:

    def make_mol_dict_without_saved_array(idx, mol):
      del idx
      return make_mol_dict(mol, max_atoms, max_mass_spec_peak_loc)

    make_mol_dict_fn = make_mol_dict_without_saved_array

  with tf.python_io.TFRecordWriter(record_path_name, options) as writer:
    for idx, mol in enumerate(mol_list):
      mol_dict = make_mol_dict_fn(idx, mol)
      example = dict_to_tfexample(mol_dict)
      writer.write(example.SerializeToString())

  if true_library_array_path_name:
    with tf.gfile.Open(true_library_array_path_name, 'w') as f:
      np.save(f, spectra_matrix) 
開發者ID:brain-research,項目名稱:deep-molecular-massspec,代碼行數:56,代碼來源:parse_sdf_utils.py


注:本文中的tensorflow.Record方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。