當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.Print方法代碼示例

本文整理匯總了Python中tensorflow.Print方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.Print方法的具體用法?Python tensorflow.Print怎麽用?Python tensorflow.Print使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.Print方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: log_quaternion_loss

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Print [as 別名]
def log_quaternion_loss(predictions, labels, params):
  """A helper function to compute the mean error between batches of quaternions.

  The caller is expected to add the loss to the graph.

  Args:
    predictions: A Tensor of size [batch_size, 4].
    labels: A Tensor of size [batch_size, 4].
    params: A dictionary of parameters. Expecting 'use_logging', 'batch_size'.

  Returns:
    A Tensor of size 1, denoting the mean error between batches of quaternions.
  """
  use_logging = params['use_logging']
  logcost = log_quaternion_loss_batch(predictions, labels, params)
  logcost = tf.reduce_sum(logcost, [0])
  batch_size = params['batch_size']
  logcost = tf.multiply(logcost, 1.0 / batch_size, name='log_quaternion_loss')
  if use_logging:
    logcost = tf.Print(
        logcost, [logcost], '[logcost]', name='log_quaternion_loss_print')
  return logcost 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:24,代碼來源:losses.py

示例2: _update_value

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Print [as 別名]
def _update_value(self, observ, reward, length):
    """Perform multiple update steps of the value baseline.

    We need to decide for the summary of one iteration, and thus choose the one
    after half of the iterations.

    Args:
      observ: Sequences of observations.
      reward: Sequences of reward.
      length: Batch of sequence lengths.

    Returns:
      Summary tensor.
    """
    with tf.name_scope('update_value'):
      loss, summary = tf.scan(
          lambda _1, _2: self._update_value_step(observ, reward, length),
          tf.range(self._config.update_epochs_value),
          [0., ''], parallel_iterations=1)
      print_loss = tf.Print(0, [tf.reduce_mean(loss)], 'value loss: ')
      with tf.control_dependencies([loss, print_loss]):
        return summary[self._config.update_epochs_value // 2] 
開發者ID:utra-robosoccer,項目名稱:soccer-matlab,代碼行數:24,代碼來源:algorithm.py

示例3: omniglot

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Print [as 別名]
def omniglot():

    sess = tf.InteractiveSession()

    """    def wrapper(v):
        return tf.Print(v, [v], message="Printing v")

    v = tf.Variable(initial_value=np.arange(0, 36).reshape((6, 6)), dtype=tf.float32, name='Matrix')

    sess.run(tf.global_variables_initializer())
    sess.run(tf.local_variables_initializer())

    temp = tf.Variable(initial_value=np.arange(0, 36).reshape((6, 6)), dtype=tf.float32, name='temp')
    temp = wrapper(v)
    #with tf.control_dependencies([temp]):
    temp.eval()
    print 'Hello'"""

    def update_tensor(V, dim2, val):  # Update tensor V, with index(:,dim2[:]) by val[:]
        val = tf.cast(val, V.dtype)
        def body(_, (v, d2, chg)):
            d2_int = tf.cast(d2, tf.int32)
            return tf.slice(tf.concat_v2([v[:d2_int],[chg] ,v[d2_int+1:]], axis=0), [0], [v.get_shape().as_list()[0]])
        Z = tf.scan(body, elems=(V, dim2, val), initializer=tf.constant(1, shape=V.get_shape().as_list()[1:], dtype=tf.float32), name="Scan_Update")
        return Z 
開發者ID:hmishra2250,項目名稱:NTM-One-Shot-TF,代碼行數:27,代碼來源:TestUpd.py

示例4: pil_image_to_tf_summary

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Print [as 別名]
def pil_image_to_tf_summary(img, tag="debug_img"):
  # serialise png bytes
  sio = io.BytesIO()
  img.save(sio, format="png")
  png_bytes = sio.getvalue()

  # https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/summary.proto
  return tf.Summary(value=[tf.Summary.Value(tag=tag,
                                            image=tf.Summary.Image(height=img.size[0],
                                                                   width=img.size[1],
                                                                   colorspace=3, # RGB
                                                                   encoded_image_string=png_bytes))])

#def dice_loss(y, y_hat, batch_size, smoothing=0):
#  y = tf.reshape(y, (batch_size, -1))
#  y_hat = tf.reshape(y_hat, (batch_size, -1))
#  intersection = y * y_hat
#  intersection_rs = tf.reduce_sum(intersection, axis=1)
#  nom = intersection_rs + smoothing
#  denom = tf.reduce_sum(y, axis=1) + tf.reduce_sum(y_hat, axis=1) + smoothing
#  score = 2.0 * (nom / denom)
#  loss = 1.0 - score
#  loss = tf.Print(loss, [intersection, intersection_rs, nom, denom], first_n=100, summarize=10000)
#  return loss 
開發者ID:matpalm,項目名稱:bnn,代碼行數:26,代碼來源:util.py

示例5: print_act_stats

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Print [as 別名]
def print_act_stats(x, _str=""):
    if not do_print_act_stats:
        return x
    if hvd.rank() != 0:
        return x
    if len(x.get_shape()) == 1:
        x_mean, x_var = tf.nn.moments(x, [0], keep_dims=True)
    if len(x.get_shape()) == 2:
        x_mean, x_var = tf.nn.moments(x, [0], keep_dims=True)
    if len(x.get_shape()) == 4:
        x_mean, x_var = tf.nn.moments(x, [0, 1, 2], keep_dims=True)
    stats = [tf.reduce_min(x_mean), tf.reduce_mean(x_mean), tf.reduce_max(x_mean),
             tf.reduce_min(tf.sqrt(x_var)), tf.reduce_mean(tf.sqrt(x_var)), tf.reduce_max(tf.sqrt(x_var))]
    return tf.Print(x, stats, "["+_str+"] "+x.name)

# Allreduce methods 
開發者ID:openai,項目名稱:glow,代碼行數:18,代碼來源:tfops.py

示例6: detect_min_val

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Print [as 別名]
def detect_min_val(input_mat, var, threshold=1e-6, name='', debug=False):
    """
    If debug is not set, will run clipout_neg. Else, will clip and print out odd eigen values

    :param input_mat: (TensorFlow Tensor)
    :param var: (TensorFlow Tensor) variable
    :param threshold: (float) the cutoff threshold
    :param name: (str) the name of the variable
    :param debug: (bool) debug function
    :return: (TensorFlow Tensor) clipped tensor
    """
    eigen_min = tf.reduce_min(input_mat)
    eigen_max = tf.reduce_max(input_mat)
    eigen_ratio = eigen_max / eigen_min
    input_mat_clipped = clipout_neg(input_mat, threshold)

    if debug:
        input_mat_clipped = tf.cond(tf.logical_or(tf.greater(eigen_ratio, 0.), tf.less(eigen_ratio, -500)),
                                    lambda: input_mat_clipped, lambda: tf.Print(
                input_mat_clipped,
                [tf.convert_to_tensor('odd ratio ' + name + ' eigen values!!!'), tf.convert_to_tensor(var.name),
                 eigen_min, eigen_max, eigen_ratio]))

    return input_mat_clipped 
開發者ID:Stable-Baselines-Team,項目名稱:stable-baselines,代碼行數:26,代碼來源:kfac_utils.py

示例7: apply_stats_eigen

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Print [as 別名]
def apply_stats_eigen(self, eigen_list):
        """
        apply the update using the eigen values of the stats

        :param eigen_list: ([TensorFlow Tensor]) The list of eigen values of the stats
        :return: ([TensorFlow Tensor]) update operations
        """
        update_ops = []
        if self.verbose > 1:
            print(('updating %d eigenvalue/vectors' % len(eigen_list)))
        for _, (tensor, mark) in enumerate(zip(eigen_list, self.eigen_update_list)):
            stats_eigen_var = self.eigen_reverse_lookup[mark]
            update_ops.append(
                tf.assign(stats_eigen_var, tensor, use_locking=True))

        with tf.control_dependencies(update_ops):
            factor_step_op = tf.assign_add(self.factor_step, 1)
            update_ops.append(factor_step_op)
            if KFAC_DEBUG:
                update_ops.append(tf.Print(tf.constant(
                    0.), [tf.convert_to_tensor('updated kfac factors')]))
        return update_ops 
開發者ID:Stable-Baselines-Team,項目名稱:stable-baselines,代碼行數:24,代碼來源:kfac.py

示例8: decode_jpeg

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Print [as 別名]
def decode_jpeg(image_buffer, scope=None):  # , dtype=tf.float32):
    """Decode a JPEG string into one 3-D float image Tensor.
  
    Args:
      image_buffer: scalar string Tensor.
      scope: Optional scope for op_scope.
    Returns:
      3-D float Tensor with values ranging from [0, 1).
    """
    # with tf.op_scope([image_buffer], scope, 'decode_jpeg'):
    # with tf.name_scope(scope, 'decode_jpeg', [image_buffer]):
    with tf.compat.v1.name_scope(scope or 'decode_jpeg'):
        # Decode the string as an RGB JPEG.
        # Note that the resulting image contains an unknown height and width
        # that is set dynamically by decode_jpeg. In other words, the height
        # and width of image is unknown at compile-time.
        image = tf.image.decode_jpeg(image_buffer, channels=3)  # ,
        #     fancy_upscaling=False,
        #     dct_method='INTEGER_FAST')

        # image = tf.Print(image, [tf.shape(image)], 'Image shape: ')
        image = tf.image.convert_image_dtype(image, dtype=tf.float32)

        return image 
開發者ID:IntelAI,項目名稱:models,代碼行數:26,代碼來源:preprocessing.py

示例9: decode_jpeg

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Print [as 別名]
def decode_jpeg(image_buffer, scope=None):  # , dtype=tf.float32):
  """Decode a JPEG string into one 3-D float image Tensor.

  Args:
    image_buffer: scalar string Tensor.
    scope: Optional scope for op_scope.
  Returns:
    3-D float Tensor with values ranging from [0, 1).
  """
  # with tf.op_scope([image_buffer], scope, 'decode_jpeg'):
  # with tf.name_scope(scope, 'decode_jpeg', [image_buffer]):
  with tf.compat.v1.name_scope(scope or 'decode_jpeg'):
    # Decode the string as an RGB JPEG.
    # Note that the resulting image contains an unknown height and width
    # that is set dynamically by decode_jpeg. In other words, the height
    # and width of image is unknown at compile-time.
    image = tf.image.decode_jpeg(image_buffer, channels=3,
                                 fancy_upscaling=False,
                                 dct_method='INTEGER_FAST')

    # image = tf.Print(image, [tf.shape(image)], 'Image shape: ')

    return image 
開發者ID:IntelAI,項目名稱:models,代碼行數:25,代碼來源:preprocessing.py

示例10: decode_jpeg

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Print [as 別名]
def decode_jpeg(image_buffer, scope=None):  # , dtype=tf.float32):
  """Decode a JPEG string into one 3-D float image Tensor.

  Args:
    image_buffer: scalar string Tensor.
    scope: Optional scope for op_scope.
  Returns:
    3-D float Tensor with values ranging from [0, 1).
  """
  # with tf.op_scope([image_buffer], scope, 'decode_jpeg'):
  # with tf.name_scope(scope, 'decode_jpeg', [image_buffer]):
  with tf.compat.v1.name_scope(scope or 'decode_jpeg'):
    # Decode the string as an RGB JPEG.
    # Note that the resulting image contains an unknown height and width
    # that is set dynamically by decode_jpeg. In other words, the height
    # and width of image is unknown at compile-time.
    image = tf.image.decode_jpeg(image_buffer, channels=3) #,
                            #     fancy_upscaling=False,
                            #     dct_method='INTEGER_FAST')

    # image = tf.Print(image, [tf.shape(image)], 'Image shape: ')
    image = tf.image.convert_image_dtype(image, dtype=tf.float32)

    return image 
開發者ID:IntelAI,項目名稱:models,代碼行數:26,代碼來源:preprocessing.py

示例11: get_logits

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Print [as 別名]
def get_logits(new_input, length, first=[]):
    """
    Compute the logits for a given waveform.

    First, preprocess with the TF version of MFC above,
    and then call DeepSpeech on the features.
    """
    # new_input = tf.Print(new_input, [tf.shape(new_input)])

    # We need to init DeepSpeech the first time we're called
    if first == []:
        first.append(False)
        # Okay, so this is ugly again.
        # We just want it to not crash.
        tf.app.flags.FLAGS.alphabet_config_path = "DeepSpeech/data/alphabet.txt"
        DeepSpeech.initialize_globals()
        print('initialized deepspeech globals')

    batch_size = new_input.get_shape()[0]

    # 1. Compute the MFCCs for the input audio
    # (this is differentable with our implementation above)
    empty_context = np.zeros((batch_size, 9, 26), dtype=np.float32)
    new_input_to_mfcc = compute_mfcc(new_input)[:, ::2]
    features = tf.concat((empty_context, new_input_to_mfcc, empty_context), 1)

    # 2. We get to see 9 frames at a time to make our decision,
    # so concatenate them together.
    features = tf.reshape(features, [new_input.get_shape()[0], -1])
    features = tf.stack([features[:, i:i+19*26] for i in range(0,features.shape[1]-19*26+1,26)],1)
    features = tf.reshape(features, [batch_size, -1, 19*26])

    # 3. Whiten the data
    mean, var = tf.nn.moments(features, axes=[0,1,2])
    features = (features-mean)/(var**.5)

    # 4. Finally we process it with DeepSpeech
    logits = DeepSpeech.BiRNN(features, length, [0]*10)

    return logits 
開發者ID:rtaori,項目名稱:Black-Box-Audio,代碼行數:42,代碼來源:tf_logits.py

示例12: fprop

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Print [as 別名]
def fprop(self, x, **kwargs):
        mean = tf.reduce_mean(x)
        std = tf.sqrt(tf.reduce_mean(tf.square(x - mean)))
        return tf.Print(x,
                        [tf.reduce_min(x), mean, tf.reduce_max(x), std],
                        "Print layer") 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:8,代碼來源:picklable_model.py

示例13: add_scalar_summary_op

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Print [as 別名]
def add_scalar_summary_op(tensor, name=None, 
    summary_key='summaries', print_summary_key='print_summaries', prefix=''):
  collections = []
  op = tf.summary.scalar(name, tensor, collections=collections)
  if summary_key != print_summary_key:
    tf.add_to_collection(summary_key, op)
  
  op = tf.Print(op, [tensor], '    {:-<25s}: '.format(name) + prefix)
  tf.add_to_collection(print_summary_key, op)
  return op 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:12,代碼來源:tf_utils.py

示例14: reorder_beam

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Print [as 別名]
def reorder_beam(beam_size, batch_size, beam_val, output, is_first,
                 tensors_to_reorder):
  """Reorder to minimize beam costs."""
  # beam_val is [batch_size x beam_size]; let b = batch_size * beam_size
  # decided is len x b x a x b
  # output is b x out_size; step is b x len x a x b;
  outputs = tf.split(axis=0, num_or_size_splits=beam_size, value=tf.nn.log_softmax(output))
  all_beam_vals, all_beam_idx = [], []
  beam_range = 1 if is_first else beam_size
  for i in xrange(beam_range):
    top_out, top_out_idx = tf.nn.top_k(outputs[i], k=beam_size)
    cur_beam_val = beam_val[:, i]
    top_out = tf.Print(top_out, [top_out, top_out_idx, beam_val, i,
                                 cur_beam_val], "GREPO", summarize=8)
    all_beam_vals.append(top_out + tf.expand_dims(cur_beam_val, 1))
    all_beam_idx.append(top_out_idx)
  all_beam_idx = tf.reshape(tf.transpose(tf.concat(axis=1, values=all_beam_idx), [1, 0]),
                            [-1])
  top_beam, top_beam_idx = tf.nn.top_k(tf.concat(axis=1, values=all_beam_vals), k=beam_size)
  top_beam_idx = tf.Print(top_beam_idx, [top_beam, top_beam_idx],
                          "GREP", summarize=8)
  reordered = [[] for _ in xrange(len(tensors_to_reorder) + 1)]
  top_out_idx = []
  for i in xrange(beam_size):
    which_idx = top_beam_idx[:, i] * batch_size + tf.range(batch_size)
    top_out_idx.append(tf.gather(all_beam_idx, which_idx))
    which_beam = top_beam_idx[:, i] / beam_size  # [batch]
    which_beam = which_beam * batch_size + tf.range(batch_size)
    reordered[0].append(tf.gather(output, which_beam))
    for i, t in enumerate(tensors_to_reorder):
      reordered[i + 1].append(tf.gather(t, which_beam))
  new_tensors = [tf.concat(axis=0, values=t) for t in reordered]
  top_out_idx = tf.concat(axis=0, values=top_out_idx)
  return (top_beam, new_tensors[0], top_out_idx, new_tensors[1:]) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:36,代碼來源:neural_gpu.py

示例15: log_quaternion_loss_batch

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Print [as 別名]
def log_quaternion_loss_batch(predictions, labels, params):
  """A helper function to compute the error between quaternions.

  Args:
    predictions: A Tensor of size [batch_size, 4].
    labels: A Tensor of size [batch_size, 4].
    params: A dictionary of parameters. Expecting 'use_logging', 'batch_size'.

  Returns:
    A Tensor of size [batch_size], denoting the error between the quaternions.
  """
  use_logging = params['use_logging']
  assertions = []
  if use_logging:
    assertions.append(
        tf.Assert(
            tf.reduce_all(
                tf.less(
                    tf.abs(tf.reduce_sum(tf.square(predictions), [1]) - 1),
                    1e-4)),
            ['The l2 norm of each prediction quaternion vector should be 1.']))
    assertions.append(
        tf.Assert(
            tf.reduce_all(
                tf.less(
                    tf.abs(tf.reduce_sum(tf.square(labels), [1]) - 1), 1e-4)),
            ['The l2 norm of each label quaternion vector should be 1.']))

  with tf.control_dependencies(assertions):
    product = tf.multiply(predictions, labels)
  internal_dot_products = tf.reduce_sum(product, [1])

  if use_logging:
    internal_dot_products = tf.Print(
        internal_dot_products,
        [internal_dot_products, tf.shape(internal_dot_products)],
        'internal_dot_products:')

  logcost = tf.log(1e-4 + 1 - tf.abs(internal_dot_products))
  return logcost 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:42,代碼來源:losses.py


注:本文中的tensorflow.Print方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。