本文整理匯總了Python中tensorflow.Placeholder方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.Placeholder方法的具體用法?Python tensorflow.Placeholder怎麽用?Python tensorflow.Placeholder使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.Placeholder方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: eran_input
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Placeholder [as 別名]
def eran_input(shape, name=None):
"""
adds a tf.Placeholder to the graph. The shape will be augmented with None at the beginning as batch size
Arguments
---------
shape : list or tuple
the shape of the Placeholder, has 1 to 3 entries
name : str
optional name for the Placeholder operation
Return
------
output : tf.Tensor
tensor associated with the Placeholder operation
"""
assert len(shape) < 4, "shape should have less than 4 entries (batch size is taken care of)"
batch_shape = [None]
for s in shape:
batch_shape.append(s)
return tf.placeholder(tf.float64, batch_shape, name=name)
示例2: export
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Placeholder [as 別名]
def export(sess, input_pl, output_tensor, input_file_pattern, output_dir):
"""Exports inference outputs to an output directory.
Args:
sess: tf.Session with variables already loaded.
input_pl: tf.Placeholder for input (HWC format).
output_tensor: Tensor for generated outut images.
input_file_pattern: Glob file pattern for input images.
output_dir: Output directory.
"""
if output_dir:
_make_dir_if_not_exists(output_dir)
if input_file_pattern:
for file_path in tf.gfile.Glob(input_file_pattern):
# Grab a single image and run it through inference
input_np = np.asarray(PIL.Image.open(file_path))
output_np = sess.run(output_tensor, feed_dict={input_pl: input_np})
image_np = data_provider.undo_normalize_image(output_np)
output_path = _file_output_path(output_dir, file_path)
PIL.Image.fromarray(image_np).save(output_path)
示例3: build_feature_placeholders
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Placeholder [as 別名]
def build_feature_placeholders(config):
"""Builds tf.Placeholder ops for feeding model features and labels.
Args:
config: ConfigDict containing the feature configurations.
Returns:
features: A dictionary containing "time_series_features" and "aux_features",
each of which is a dictionary of tf.Placeholders of features from the
input configuration. All features have dtype float32 and shape
[batch_size, length].
"""
batch_size = None # Batch size will be dynamically specified.
features = {"time_series_features": {}, "aux_features": {}}
for feature_name, feature_spec in config.items():
placeholder = tf.placeholder(
dtype=tf.float32,
shape=[batch_size, feature_spec.length],
name=feature_name)
if feature_spec.is_time_series:
features["time_series_features"][feature_name] = placeholder
else:
features["aux_features"][feature_name] = placeholder
return features
示例4: build_labels_placeholder
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Placeholder [as 別名]
def build_labels_placeholder():
"""Builds a tf.Placeholder op for feeding model labels.
Returns:
labels: An int64 tf.Placeholder with shape [batch_size].
"""
batch_size = None # Batch size will be dynamically specified.
return tf.placeholder(dtype=tf.int64, shape=[batch_size], name="labels")
示例5: get_deterministic_network_move
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Placeholder [as 別名]
def get_deterministic_network_move(session, input_layer, output_layer, board_state, side, valid_only=False,
game_spec=None):
"""Choose a move for the given board_state using a deterministic policy. A move is selected using the values from
the output_layer and selecting the move with the highest score.
Args:
session (tf.Session): Session used to run this network
input_layer (tf.Placeholder): Placeholder to the network used to feed in the board_state
output_layer (tf.Tensor): Tensor that will output the probabilities of the moves, we expect this to be of
dimesensions (None, board_squares).
board_state: The board_state we want to get the move for.
side: The side that is making the move.
Returns:
(np.array) It's shape is (board_squares), and it is a 1 hot encoding for the move the network has chosen.
"""
np_board_state = np.array(board_state)
np_board_state = np_board_state.reshape(1, *input_layer.get_shape().as_list()[1:])
if side == -1:
np_board_state = -np_board_state
probability_of_actions = session.run(output_layer,
feed_dict={input_layer: np_board_state})[0]
if valid_only:
available_moves = game_spec.available_moves(board_state)
available_moves_flat = [game_spec.tuple_move_to_flat(x) for x in available_moves]
for i in range(game_spec.board_squares()):
if i not in available_moves_flat:
probability_of_actions[i] = 0
move = np.argmax(probability_of_actions)
one_hot = np.zeros(len(probability_of_actions))
one_hot[move] = 1.
return one_hot
示例6: graph_gather
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Placeholder [as 別名]
def graph_gather(atoms, membership_placeholder, batch_size):
"""
Parameters
----------
atoms: tf.Tensor
Of shape (n_atoms, n_feat)
membership_placeholder: tf.Placeholder
Of shape (n_atoms,). Molecule each atom belongs to.
batch_size: int
Batch size for deep model.
Returns
-------
tf.Tensor
Of shape (batch_size, n_feat)
"""
# WARNING: Does not work for Batch Size 1! If batch_size = 1, then use reduce_sum!
assert batch_size > 1, "graph_gather requires batches larger than 1"
# Obtain the partitions for each of the molecules
activated_par = tf.dynamic_partition(atoms, membership_placeholder,
batch_size)
# Sum over atoms for each molecule
sparse_reps = [
tf.reduce_sum(activated, 0, keep_dims=True) for activated in activated_par
]
# Get the final sparse representations
sparse_reps = tf.concat(axis=0, values=sparse_reps)
return sparse_reps
示例7: get_stochastic_network_move
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Placeholder [as 別名]
def get_stochastic_network_move(session, input_layer, output_layer, board_state, side,
valid_only=False, game_spec=None):
"""Choose a move for the given board_state using a stocastic policy. A move is selected using the values from the
output_layer as a categorical probability distribution to select a single move
Args:
session (tf.Session): Session used to run this network
input_layer (tf.Placeholder): Placeholder to the network used to feed in the board_state
output_layer (tf.Tensor): Tensor that will output the probabilities of the moves, we expect this to be of
dimesensions (None, board_squares) and the sum of values across the board_squares to be 1.
board_state: The board_state we want to get the move for.
side: The side that is making the move.
Returns:
(np.array) It's shape is (board_squares), and it is a 1 hot encoding for the move the network has chosen.
"""
np_board_state = np.array(board_state)
if side == -1:
np_board_state = -np_board_state
np_board_state = np_board_state.reshape(1, *input_layer.get_shape().as_list()[1:])
probability_of_actions = session.run(output_layer,
feed_dict={input_layer: np_board_state})[0]
if valid_only:
available_moves = list(game_spec.available_moves(board_state))
if len(available_moves) == 1:
move = np.zeros(game_spec.board_squares())
np.put(move, game_spec.tuple_move_to_flat(available_moves[0]), 1)
return move
available_moves_flat = [game_spec.tuple_move_to_flat(x) for x in available_moves]
for i in range(game_spec.board_squares()):
if i not in available_moves_flat:
probability_of_actions[i] = 0.
prob_mag = sum(probability_of_actions)
if prob_mag != 0.:
probability_of_actions /= sum(probability_of_actions)
try:
move = np.random.multinomial(1, probability_of_actions)
except ValueError:
# sometimes because of rounding errors we end up with probability_of_actions summing to greater than 1.
# so need to reduce slightly to be a valid value
move = np.random.multinomial(1, probability_of_actions / (1. + 1e-6))
return move