本文整理匯總了Python中tensorflow.PaddingFIFOQueue方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.PaddingFIFOQueue方法的具體用法?Python tensorflow.PaddingFIFOQueue怎麽用?Python tensorflow.PaddingFIFOQueue使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.PaddingFIFOQueue方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_input_queues
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import PaddingFIFOQueue [as 別名]
def get_input_queues(path, word2idx, batch_size=32, num_threads=8):
input_ph = tf.placeholder(tf.int32, shape=[None]) # [T]
queue = tf.PaddingFIFOQueue(shapes=[[None, ]], dtypes=[tf.int32], capacity=5000,)
# TODO: enqueue_many would be faster, would require batch and padding at numpy-level
enqueue_op = queue.enqueue([input_ph])
def enqueue_data(sess):
# for epoch in range(epoch_size):
while True: #
for idx, line in enumerate(read_data(path)):
v = vectorize(line, word2idx)
sess.run(enqueue_op, feed_dict={input_ph: v})
# dequeue_batch = queue.dequeue_many(batch_size)
dequeue_op = queue.dequeue()
dequeue_batch = tf.train.batch([dequeue_op], batch_size=batch_size, num_threads=num_threads, capacity=1000,
dynamic_pad=True, name="batch_and_pad")
# TODO: get corpus_size here
return enqueue_data, dequeue_batch
示例2: testMultiQueueConstructor
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import PaddingFIFOQueue [as 別名]
def testMultiQueueConstructor(self):
with tf.Graph().as_default():
q = tf.PaddingFIFOQueue(5, (tf.int32, tf.float32),
((), ()),
shared_name="foo", name="Q")
self.assertTrue(isinstance(q.queue_ref, tf.Tensor))
self.assertEquals(tf.string_ref, q.queue_ref.dtype)
self.assertProtoEquals("""
name:'Q' op:'PaddingFIFOQueue'
attr { key: 'component_types' value { list {
type: DT_INT32 type : DT_FLOAT
} } }
attr { key: 'shapes' value { list { shape { } shape { } } } }
attr { key: 'capacity' value { i: 5 } }
attr { key: 'container' value { s: '' } }
attr { key: 'shared_name' value { s: 'foo' } }
""", q.queue_ref.op.node_def)
示例3: testConstructorWithShapes
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import PaddingFIFOQueue [as 別名]
def testConstructorWithShapes(self):
with tf.Graph().as_default():
q = tf.PaddingFIFOQueue(5, (tf.int32, tf.float32),
shapes=(tf.TensorShape([1, 1, 2, 3]),
tf.TensorShape([5, 8])), name="Q")
self.assertTrue(isinstance(q.queue_ref, tf.Tensor))
self.assertEquals(tf.string_ref, q.queue_ref.dtype)
self.assertProtoEquals("""
name:'Q' op:'PaddingFIFOQueue'
attr { key: 'component_types' value { list {
type: DT_INT32 type : DT_FLOAT
} } }
attr { key: 'shapes' value { list {
shape { dim { size: 1 }
dim { size: 1 }
dim { size: 2 }
dim { size: 3 } }
shape { dim { size: 5 }
dim { size: 8 } }
} } }
attr { key: 'capacity' value { i: 5 } }
attr { key: 'container' value { s: '' } }
attr { key: 'shared_name' value { s: '' } }
""", q.queue_ref.op.node_def)
示例4: testParallelEnqueue
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import PaddingFIFOQueue [as 別名]
def testParallelEnqueue(self):
with self.test_session() as sess:
q = tf.PaddingFIFOQueue(10, tf.float32, ((),))
elems = [10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0]
enqueue_ops = [q.enqueue((x,)) for x in elems]
dequeued_t = q.dequeue()
# Run one producer thread for each element in elems.
def enqueue(enqueue_op):
sess.run(enqueue_op)
threads = [self.checkedThread(target=enqueue, args=(e,))
for e in enqueue_ops]
for thread in threads:
thread.start()
for thread in threads:
thread.join()
# Dequeue every element using a single thread.
results = []
for _ in xrange(len(elems)):
results.append(dequeued_t.eval())
self.assertItemsEqual(elems, results)
示例5: testParallelDequeue
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import PaddingFIFOQueue [as 別名]
def testParallelDequeue(self):
with self.test_session() as sess:
q = tf.PaddingFIFOQueue(10, tf.float32, ((),))
elems = [10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0]
enqueue_ops = [q.enqueue((x,)) for x in elems]
dequeued_t = q.dequeue()
# Enqueue every element using a single thread.
for enqueue_op in enqueue_ops:
enqueue_op.run()
# Run one consumer thread for each element in elems.
results = []
def dequeue():
results.append(sess.run(dequeued_t))
threads = [self.checkedThread(target=dequeue) for _ in enqueue_ops]
for thread in threads:
thread.start()
for thread in threads:
thread.join()
self.assertItemsEqual(elems, results)
示例6: testMultiEnqueueManyWithPartiallyKnownShapes
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import PaddingFIFOQueue [as 別名]
def testMultiEnqueueManyWithPartiallyKnownShapes(self):
with self.test_session() as sess:
q = tf.PaddingFIFOQueue(
10, (tf.float32, tf.int32), shapes=((), (None,)))
float_elems = [10.0, 20.0, 30.0, 40.0]
int_elems = [[1, 2], [3, 4], [5, 6], [7, 8]]
enqueue_op = q.enqueue_many((float_elems, int_elems))
dequeued_t = q.dequeue()
enqueue_op.run()
enqueue_op.run()
for i in range(8):
float_val, int_val = sess.run(dequeued_t)
self.assertEqual(float_elems[i % 4], float_val)
self.assertAllEqual(int_elems[i % 4], int_val)
示例7: testEnqueueDequeueManyWrongPartiallyKnownShape
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import PaddingFIFOQueue [as 別名]
def testEnqueueDequeueManyWrongPartiallyKnownShape(self):
with self.test_session() as sess:
# First dimension of second component is unknown, second
# dimension must be 3.
q = tf.PaddingFIFOQueue(10, (tf.int32, tf.int32), ((2, 2), (None, 3)))
elems_ok = np.array([1] * 8).reshape((2, 2, 2)).astype(np.int32)
elems_bad = tf.placeholder(tf.int32)
enqueue_op = q.enqueue_many((elems_ok, elems_bad))
dequeued_t = q.dequeue_many(2)
with self.assertRaisesRegexp(
tf.errors.InvalidArgumentError,
"Shape mismatch in tuple component 1. "
r"Expected \[2,\?,3\], got \[2,3,4\]"):
sess.run([enqueue_op],
feed_dict={elems_bad: np.array([1] * 24).reshape((2, 3, 4))})
dequeued_t.eval()
示例8: testParallelDequeueMany
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import PaddingFIFOQueue [as 別名]
def testParallelDequeueMany(self):
with self.test_session() as sess:
q = tf.PaddingFIFOQueue(1000, tf.float32, shapes=((),))
elems = [10.0 * x for x in range(1000)]
enqueue_op = q.enqueue_many((elems,))
dequeued_t = q.dequeue_many(100)
enqueue_op.run()
# Dequeue 100 items in parallel on 10 threads.
dequeued_elems = []
def dequeue():
dequeued_elems.extend(sess.run(dequeued_t))
threads = [self.checkedThread(target=dequeue) for _ in range(10)]
for thread in threads:
thread.start()
for thread in threads:
thread.join()
self.assertItemsEqual(elems, dequeued_elems)
示例9: testParallelDequeueUpTo
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import PaddingFIFOQueue [as 別名]
def testParallelDequeueUpTo(self):
with self.test_session() as sess:
q = tf.PaddingFIFOQueue(1000, tf.float32, shapes=((),))
elems = [10.0 * x for x in range(1000)]
enqueue_op = q.enqueue_many((elems,))
close_op = q.close()
dequeued_t = q.dequeue_up_to(101)
enqueue_op.run()
close_op.run()
# Dequeue up to 101 items in parallel on 10 threads, from closed queue.
dequeued_elems = []
def dequeue():
dequeued_elems.extend(sess.run(dequeued_t))
threads = [self.checkedThread(target=dequeue) for _ in range(10)]
for thread in threads:
thread.start()
for thread in threads:
thread.join()
self.assertItemsEqual(elems, dequeued_elems)
示例10: testDequeueManyWithTensorParameter
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import PaddingFIFOQueue [as 別名]
def testDequeueManyWithTensorParameter(self):
with self.test_session():
# Define a first queue that contains integer counts.
dequeue_counts = [random.randint(1, 10) for _ in range(100)]
count_q = tf.PaddingFIFOQueue(100, tf.int32, ((),))
enqueue_counts_op = count_q.enqueue_many((dequeue_counts,))
total_count = sum(dequeue_counts)
# Define a second queue that contains total_count elements.
elems = [random.randint(0, 100) for _ in range(total_count)]
q = tf.PaddingFIFOQueue(total_count, tf.int32, ((),))
enqueue_elems_op = q.enqueue_many((elems,))
# Define a subgraph that first dequeues a count, then DequeuesMany
# that number of elements.
dequeued_t = q.dequeue_many(count_q.dequeue())
enqueue_counts_op.run()
enqueue_elems_op.run()
dequeued_elems = []
for _ in dequeue_counts:
dequeued_elems.extend(dequeued_t.eval())
self.assertEqual(elems, dequeued_elems)
示例11: testDequeueFromClosedQueue
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import PaddingFIFOQueue [as 別名]
def testDequeueFromClosedQueue(self):
with self.test_session():
q = tf.PaddingFIFOQueue(10, tf.float32, ((),))
elems = [10.0, 20.0, 30.0, 40.0]
enqueue_op = q.enqueue_many((elems,))
close_op = q.close()
dequeued_t = q.dequeue()
enqueue_op.run()
close_op.run()
for elem in elems:
self.assertEqual([elem], dequeued_t.eval())
# Expect the operation to fail due to the queue being closed.
with self.assertRaisesRegexp(tf.errors.OutOfRangeError,
"is closed and has insufficient"):
dequeued_t.eval()
示例12: testBlockingDequeueFromClosedQueue
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import PaddingFIFOQueue [as 別名]
def testBlockingDequeueFromClosedQueue(self):
with self.test_session() as sess:
q = tf.PaddingFIFOQueue(10, tf.float32, ((),))
elems = [10.0, 20.0, 30.0, 40.0]
enqueue_op = q.enqueue_many((elems,))
close_op = q.close()
dequeued_t = q.dequeue()
enqueue_op.run()
def dequeue():
for elem in elems:
self.assertEqual([elem], sess.run(dequeued_t))
# Expect the operation to fail due to the queue being closed.
with self.assertRaisesRegexp(tf.errors.OutOfRangeError,
"is closed and has insufficient"):
sess.run(dequeued_t)
dequeue_thread = self.checkedThread(target=dequeue)
dequeue_thread.start()
# The close_op should run after the dequeue_thread has blocked.
# TODO(mrry): Figure out how to do this without sleeping.
time.sleep(0.1)
close_op.run()
dequeue_thread.join()
示例13: testDequeueUpToFromClosedQueueReturnsRemainder
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import PaddingFIFOQueue [as 別名]
def testDequeueUpToFromClosedQueueReturnsRemainder(self):
with self.test_session() as sess:
q = tf.PaddingFIFOQueue(10, tf.float32, ((),))
elems = [10.0, 20.0, 30.0, 40.0]
enqueue_op = q.enqueue_many((elems,))
close_op = q.close()
dequeued_t = q.dequeue_up_to(3)
enqueue_op.run()
def dequeue():
self.assertAllEqual(elems[:3], sess.run(dequeued_t))
self.assertAllEqual(elems[3:], sess.run(dequeued_t))
dequeue_thread = self.checkedThread(target=dequeue)
dequeue_thread.start()
# The close_op should run after the dequeue_thread has blocked.
# TODO(mrry): Figure out how to do this without sleeping.
time.sleep(0.1)
close_op.run()
dequeue_thread.join()
示例14: testBlockingDequeueManyFromClosedQueue
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import PaddingFIFOQueue [as 別名]
def testBlockingDequeueManyFromClosedQueue(self):
with self.test_session() as sess:
q = tf.PaddingFIFOQueue(10, tf.float32, ((),))
elems = [10.0, 20.0, 30.0, 40.0]
enqueue_op = q.enqueue_many((elems,))
close_op = q.close()
dequeued_t = q.dequeue_many(4)
enqueue_op.run()
def dequeue():
self.assertAllEqual(elems, sess.run(dequeued_t))
# Expect the operation to fail due to the queue being closed.
with self.assertRaisesRegexp(tf.errors.OutOfRangeError,
"is closed and has insufficient"):
sess.run(dequeued_t)
dequeue_thread = self.checkedThread(target=dequeue)
dequeue_thread.start()
# The close_op should run after the dequeue_thread has blocked.
# TODO(mrry): Figure out how to do this without sleeping.
time.sleep(0.1)
close_op.run()
dequeue_thread.join()
示例15: testBlockingDequeueManyButNotAllFromClosedQueue
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import PaddingFIFOQueue [as 別名]
def testBlockingDequeueManyButNotAllFromClosedQueue(self):
with self.test_session() as sess:
q = tf.PaddingFIFOQueue(10, tf.float32, ((),))
elems = [10.0, 20.0, 30.0, 40.0]
enqueue_op = q.enqueue_many((elems,))
close_op = q.close()
dequeued_t = q.dequeue_many(3)
enqueue_op.run()
def dequeue():
self.assertAllEqual(elems[:3], sess.run(dequeued_t))
# Expect the operation to fail due to the queue being closed.
with self.assertRaisesRegexp(tf.errors.OutOfRangeError,
"is closed and has insufficient"):
sess.run(dequeued_t)
dequeue_thread = self.checkedThread(target=dequeue)
dequeue_thread.start()
# The close_op should run after the dequeue_thread has blocked.
# TODO(mrry): Figure out how to do this without sleeping.
time.sleep(0.1)
close_op.run()
dequeue_thread.join()