當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.Operation方法代碼示例

本文整理匯總了Python中tensorflow.Operation方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.Operation方法的具體用法?Python tensorflow.Operation怎麽用?Python tensorflow.Operation使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.Operation方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: get_op

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Operation [as 別名]
def get_op(tfobj_or_name, graph):
    """
    Get a :py:class:`tf.Operation` object.

    :param tfobj_or_name: either a :py:class:`tf.Tensor`, :py:class:`tf.Operation` or
                          a name to either.
    :param graph: a :py:class:`tf.Graph` object containing the operation.
                  By default the graph we don't require this argument to be provided.
    """
    graph = validated_graph(graph)
    _assert_same_graph(tfobj_or_name, graph)
    if isinstance(tfobj_or_name, tf.Operation):
        return tfobj_or_name
    name = tfobj_or_name
    if isinstance(tfobj_or_name, tf.Tensor):
        name = tfobj_or_name.name
    if not isinstance(name, six.string_types):
        raise TypeError('invalid op request for [type {}] {}'.format(type(name), name))
    _op_name = op_name(name, graph=None)
    op = graph.get_operation_by_name(_op_name)  # pylint: disable=invalid-name
    err_msg = 'cannot locate op {} in the current graph, got [type {}] {}'
    assert isinstance(op, tf.Operation), err_msg.format(_op_name, type(op), op)
    return op 
開發者ID:databricks,項目名稱:spark-deep-learning,代碼行數:25,代碼來源:utils.py

示例2: get_tensor

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Operation [as 別名]
def get_tensor(tfobj_or_name, graph):
    """
    Get a :py:class:`tf.Tensor` object

    :param tfobj_or_name: either a :py:class:`tf.Tensor`, :py:class:`tf.Operation` or
                          a name to either.
    :param graph: a :py:class:`tf.Graph` object containing the tensor.
                  By default the graph we don't require this argument to be provided.
    """
    graph = validated_graph(graph)
    _assert_same_graph(tfobj_or_name, graph)
    if isinstance(tfobj_or_name, tf.Tensor):
        return tfobj_or_name
    name = tfobj_or_name
    if isinstance(tfobj_or_name, tf.Operation):
        name = tfobj_or_name.name
    if not isinstance(name, six.string_types):
        raise TypeError('invalid tensor request for {} of {}'.format(name, type(name)))
    _tensor_name = tensor_name(name, graph=None)
    tnsr = graph.get_tensor_by_name(_tensor_name)
    err_msg = 'cannot locate tensor {} in the current graph, got [type {}] {}'
    assert isinstance(tnsr, tf.Tensor), err_msg.format(_tensor_name, type(tnsr), tnsr)
    return tnsr 
開發者ID:databricks,項目名稱:spark-deep-learning,代碼行數:25,代碼來源:utils.py

示例3: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Operation [as 別名]
def __init__(self, inputs, outputs, updates, givens):
        """
        Theano like function

        :param inputs: (TensorFlow Tensor or Object with make_feed_dict) list of input arguments
        :param outputs: (TensorFlow Tensor) list of outputs or a single output to be returned from function. Returned
            value will also have the same shape.
        :param updates: ([tf.Operation] or tf.Operation)
        list of update functions or single update function that will be run whenever
        the function is called. The return is ignored.
        :param givens: (dict) the values known for the output
        """
        for inpt in inputs:
            if not hasattr(inpt, 'make_feed_dict') and not (isinstance(inpt, tf.Tensor) and len(inpt.op.inputs) == 0):
                assert False, "inputs should all be placeholders, constants, or have a make_feed_dict method"
        self.inputs = inputs
        updates = updates or []
        self.update_group = tf.group(*updates)
        self.outputs_update = list(outputs) + [self.update_group]
        self.givens = {} if givens is None else givens 
開發者ID:Stable-Baselines-Team,項目名稱:stable-baselines,代碼行數:22,代碼來源:tf_util.py

示例4: get_train_op

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Operation [as 別名]
def get_train_op(self, model_results: ModelResults) -> tf.Operation:
        """
        Create train operation using optimization handler. Also will add the
        update operation to it

        Parameters
        ----------
        model_results
            model results

        Returns
        -------
        train_with_update_op
            train operation together with update operation
        """
        with tf.variable_scope(ScopeNames.TRAIN_OP):
            train_op = self.optimization_handler.get_train_op(
                model_results.grads_and_vars,
                model_results.regularization_grads_and_vars,
                trainable_variables=self.model.trainable_variables)
            update_op = self._get_update_op()
            train_with_update_op = tf.group(
                train_op, update_op, name='train_op')
        return train_with_update_op 
開發者ID:audi,項目名稱:nucleus7,代碼行數:26,代碼來源:model_handler.py

示例5: matmul_resources

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Operation [as 別名]
def matmul_resources(self, op):
		"""
		checks which one of the direct ancestor tf.Operations is a constant and returns the underlying tensor as a numpy.ndarray inside a tuple. The matrix is manipulated in a way that it can be 
		used as the left multiplier in the matrix multiplication.
		
		Arguments
		---------
		op : tf.Operation
		    must have type "MatMul"
		
		Return 
		------
		output : tuple
		    tuple with the matrix (of type numpy.ndarray) as its only item  
		"""
		inputs = op.inputs
		left   = inputs[0]
		right  = inputs[1]
		
		if left.op.type == "Const":
			matrix = self.sess.run(left) if not op.get_attr("transpose_a") else self.sess.run(left).transpose()
		else:
			matrix = self.sess.run(right).transpose() if not op.get_attr("transpose_b") else self.sess.run(right)
		return (matrix,) 
開發者ID:eth-sri,項目名稱:eran,代碼行數:26,代碼來源:tensorflow_translator.py

示例6: add_resources

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Operation [as 別名]
def add_resources(self, op):
		"""
		checks which one of the direct ancestor tf.Operations is a constant and returns the underlying tensor as a numpy.ndarray inside a tuple.
		
		Arguments
		---------
		op : tf.Operation
		    must have type "Add"
		
		Return 
		------
		output : tuple
		    tuple with the addend (of type numpy.ndarray) as its only item   
		"""
		inputs = op.inputs
		left   = inputs[0]
		right  = inputs[1]
		
		if left.op.type == "Const":
			addend = self.sess.run(left)
		else:
			addend = self.sess.run(right)
		return (addend,) 
開發者ID:eth-sri,項目名稱:eran,代碼行數:25,代碼來源:tensorflow_translator.py

示例7: conv2d_resources

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Operation [as 別名]
def conv2d_resources(self, op):
		"""
		Extracts the filter, the stride of the filter, and the padding from op as well as the shape of the input coming into op
		
		Arguments
		---------
		op : tf.Operation
		    must have type "Conv2D"
		
		Return 
		------
		output : tuple
		    has 4 entries (numpy.ndarray, numpy.ndarray, numpy.ndarray, str)
		"""
		inputs  = op.inputs
		image   = inputs[0]
		filters = op.inputs[1]
		
		filters     = self.sess.run(filters)
		image_shape = tensorshape_to_intlist(image.shape)[1:]
		strides     = op.get_attr('strides')[1:3]
		padding_str = op.get_attr('padding').decode('utf-8')
		pad_top, pad_left = calculate_padding(padding_str, image_shape, filters.shape, strides)
		return filters, image_shape, strides, pad_top, pad_left 
開發者ID:eth-sri,項目名稱:eran,代碼行數:26,代碼來源:tensorflow_translator.py

示例8: pool_resources

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Operation [as 別名]
def pool_resources(self, op):
		"""
		Extracts the incoming image size (heigth, width, channels), the size of the maxpool/averagepool window (heigth, width), and the strides of the window (heigth, width)
		
		Arguments
		---------
		op : tf.Operation
		    must have type "MaxPool" or "AvgPool"
		
		Return
		------
		output : tuple
		    has 4 entries - (list, numpy.ndarray, numpy.ndarray, str)
		"""
		image       = op.inputs[0]
		
		image_shape = tensorshape_to_intlist(image.shape)[1:]
		window_size = op.get_attr('ksize')[1:3]
		strides     = op.get_attr('strides')[1:3]
		padding_str = op.get_attr('padding').decode('utf-8')
		pad_top, pad_left = calculate_padding(padding_str, image_shape, window_size, strides)

		return image_shape, window_size, strides, pad_top, pad_left 
開發者ID:eth-sri,項目名稱:eran,代碼行數:25,代碼來源:tensorflow_translator.py

示例9: _to_names

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Operation [as 別名]
def _to_names(self, graph_item):
        # Base cases
        if isinstance(graph_item, tf.Tensor):
            return ('Tensor', graph_item.name)
        if isinstance(graph_item, tf.Operation):
            return ('Operation', graph_item.name)
        if isinstance(graph_item, tf.Variable):
            return ('Variable', graph_item.op.name)
        if isinstance(graph_item, (bool, str, int, float)) or graph_item is None:
            return graph_item

        # Handle different containers
        if isinstance(graph_item, (list, tuple, np.ndarray)):
            return type(graph_item)([self._to_names(item) for item in graph_item])
        if isinstance(graph_item, (dict, Config)):
            return type(graph_item)({key: self._to_names(graph_item[key]) for key in graph_item.keys()})
        raise ValueError('Unrecognized type of value.') 
開發者ID:analysiscenter,項目名稱:batchflow,代碼行數:19,代碼來源:base.py

示例10: _to_graph_items

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Operation [as 別名]
def _to_graph_items(self, name):
        # Base cases
        if isinstance(name, (bool, str, int, float)) or name is None:
            return name

        # Handle different containers
        if isinstance(name, (list, tuple, np.ndarray)):
            if len(name) == 2:
                type_, name_ = name
                if type_ == 'Variable':
                    with self.graph.as_default():
                        return tf.global_variables(name_)[0]
                if type_ == 'Tensor':
                    return self.graph.get_tensor_by_name(name_)
                if type_ == 'Operation':
                    return self.graph.get_operation_by_name(name_)
            return type(name)([self._to_graph_items(item) for item in name])

        if isinstance(name, (dict, Config)):
            return type(name)({key: self._to_graph_items(name[key]) for key in name.keys()})
        raise ValueError('Unrecognized type of value.') 
開發者ID:analysiscenter,項目名稱:batchflow,代碼行數:23,代碼來源:base.py

示例11: minimize

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Operation [as 別名]
def minimize(self, loss):
        """Create an optimizer to minimize the model loss

        Parameters
        ----------
        loss: tf.Tensor
            Node which needs to be evaluated for computing the model loss.

        Returns
        -------
        train: tf.Operation
            Node that needs to be evaluated for minimizing the loss during training
        """
        self.optimizer = tf.train.AdagradOptimizer(learning_rate=self._optimizer_params['lr'])
        train = self.optimizer.minimize(loss)
        return train 
開發者ID:Accenture,項目名稱:AmpliGraph,代碼行數:18,代碼來源:optimizers.py

示例12: testTrainingConstructionClassificationSparse

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Operation [as 別名]
def testTrainingConstructionClassificationSparse(self):
    input_data = tf.SparseTensor(
        indices=[[0, 0], [0, 3],
                 [1, 0], [1, 7],
                 [2, 1],
                 [3, 9]],
        values=[-1.0, 0.0,
                -1., 2.,
                1.,
                -2.0],
        shape=[4, 10])
    input_labels = [0, 1, 2, 3]

    params = tensor_forest.ForestHParams(
        num_classes=4, num_features=10, num_trees=10, max_nodes=1000,
        split_after_samples=25).fill()

    graph_builder = tensor_forest.RandomForestGraphs(params)
    graph = graph_builder.training_graph(input_data, input_labels)
    self.assertTrue(isinstance(graph, tf.Operation)) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:22,代碼來源:tensor_forest_test.py

示例13: tf_num_params

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Operation [as 別名]
def tf_num_params(x):
  """Number of parameters in a TensorFlow subgraph.

  Args:
      x: root of the subgraph (Tensor, Operation)

  Returns:
      Total number of elements found in all Variables
      in the subgraph.
  """

  if isinstance(x, tf.Tensor):
    shape = x.get_shape()
    x = x.op
  if x.type == "Variable":
    return shape.num_elements()
  totals = [tf_num_params(y) for y in x.inputs]
  return sum(totals) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:20,代碼來源:summaries.py

示例14: tf_left_split

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Operation [as 別名]
def tf_left_split(op):
  """Split the parameters of op for left recursion.

  Args:
    op: tf.Operation

  Returns:
    A tuple of the leftmost input tensor and a list of the
    remaining arguments.
  """

  if len(op.inputs) < 1:
    return None, []
  if op.type == "Concat":
    return op.inputs[1], op.inputs[2:]
  return op.inputs[0], op.inputs[1:] 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:18,代碼來源:summaries.py

示例15: tf_parameter_iter

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Operation [as 別名]
def tf_parameter_iter(x):
  """Iterate over the left branches of a graph and yield sizes.

  Args:
      x: root of the subgraph (Tensor, Operation)

  Yields:
      A triple of name, number of params, and shape.
  """

  while 1:
    if isinstance(x, tf.Tensor):
      shape = x.get_shape().as_list()
      x = x.op
    else:
      shape = ""
    left, right = tf_left_split(x)
    totals = [tf_num_params(y) for y in right]
    total = sum(totals)
    yield x.name, total, shape
    if left is None: break
    x = left 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:24,代碼來源:summaries.py


注:本文中的tensorflow.Operation方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。