本文整理匯總了Python中tensorflow.HistogramProto方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.HistogramProto方法的具體用法?Python tensorflow.HistogramProto怎麽用?Python tensorflow.HistogramProto使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.HistogramProto方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: AddHistogram
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import HistogramProto [as 別名]
def AddHistogram(self,
tag,
wall_time=0,
step=0,
hmin=1,
hmax=2,
hnum=3,
hsum=4,
hsum_squares=5,
hbucket_limit=None,
hbucket=None):
histo = tf.HistogramProto(min=hmin,
max=hmax,
num=hnum,
sum=hsum,
sum_squares=hsum_squares,
bucket_limit=hbucket_limit,
bucket=hbucket)
event = tf.summary.Event(
wall_time=wall_time,
step=step,
summary=tf.Summary(value=[tf.Summary.Value(
tag=tag, histo=histo)]))
self.AddEvent(event)
示例2: _MakeHistogram
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import HistogramProto [as 別名]
def _MakeHistogram(values):
"""Convert values into a histogram proto using logic from histogram.cc."""
limits = _MakeHistogramBuckets()
counts = [0] * len(limits)
for v in values:
idx = bisect.bisect_left(limits, v)
counts[idx] += 1
limit_counts = [(limits[i], counts[i]) for i in xrange(len(limits))
if counts[i]]
bucket_limit = [lc[0] for lc in limit_counts]
bucket = [lc[1] for lc in limit_counts]
sum_sq = sum(v * v for v in values)
return tf.HistogramProto(min=min(values),
max=max(values),
num=len(values),
sum=sum(values),
sum_squares=sum_sq,
bucket_limit=bucket_limit,
bucket=bucket)
示例3: histo_summary
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import HistogramProto [as 別名]
def histo_summary(self, tag, values, step, bins=1000):
# Create a histogram using numpy
counts, bin_edges = np.histogram(values, bins=bins)
# Fill the fields of the histogram proto
hist = tf.HistogramProto()
hist.min = float(np.min(values))
hist.max = float(np.max(values))
hist.num = int(np.prod(values.shape))
hist.sum = float(np.sum(values))
hist.sum_squares = float(np.sum(values ** 2))
# Drop the start of the first bin
bin_edges = bin_edges[1:]
# Add bin edges and counts
for edge in bin_edges:
hist.bucket_limit.append(edge)
for c in counts:
hist.bucket.append(c)
# Create and write Summary
summary = tf.Summary(value=[tf.Summary.Value(tag=tag, histo=hist)])
self.writer.add_summary(summary, step)
示例4: log_histogram
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import HistogramProto [as 別名]
def log_histogram(self, tag, values, step = None, bins = 1000):
if not step:
step = self.step
values = np.array(values)
counts, bin_edges = np.histogram(values, bins=bins)
hist = tf.HistogramProto()
hist.min = float(np.min(values))
hist.max = float(np.max(values))
hist.num = int(np.prod(values.shape))
hist.sum = float(np.sum(values))
hist.sum_squares = float(np.sum(values**2))
for edge in bin_edges:
hist.bucket_limit.append(edge)
for c in counts:
hist.bucket.append(c)
summary = tf.Summary(value=[tf.Summary.Value(tag=tag, histo=hist)])
self.writer.add_summary(summary, step)
self.writer.flush()
示例5: log_histogram
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import HistogramProto [as 別名]
def log_histogram(self, tag, values, bins=1000):
""" https://gist.github.com/gyglim/1f8dfb1b5c82627ae3efcfbbadb9f514 """
values = np.array(values)
counts, bin_edges = np.histogram(values, bins=bins)
hist = tf.HistogramProto()
hist.min = float(np.min(values))
hist.max = float(np.max(values))
hist.num = int(np.prod(values.shape))
hist.sum = float(np.sum(values))
hist.sum_squares = float(np.sum(values**2))
bin_edges = bin_edges[1:]
for edge in bin_edges:
hist.bucket_limit.append(edge)
for c in counts:
hist.bucket.append(c)
summary = tf.Summary(value=[tf.Summary.Value(tag=tag, histo=hist)])
self.writer.add_summary(summary, self._hparams.global_step)
self.writer.flush()
示例6: histo_summary
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import HistogramProto [as 別名]
def histo_summary(self, tag, values, step, bins=1000):
"""Log a histogram of the tensor of values."""
# Create a histogram using numpy
counts, bin_edges = np.histogram(values, bins=bins)
# Fill the fields of the histogram proto
hist = tf.HistogramProto()
hist.min = float(np.min(values))
hist.max = float(np.max(values))
hist.num = int(np.prod(values.shape))
hist.sum = float(np.sum(values))
hist.sum_squares = float(np.sum(values**2))
# Drop the start of the first bin
bin_edges = bin_edges[1:]
# Add bin edges and counts
for edge in bin_edges:
hist.bucket_limit.append(edge)
for c in counts:
hist.bucket.append(c)
# Create and write Summary
summary = tf.Summary(value=[tf.Summary.Value(tag=tag, histo=hist)])
self.writer.add_summary(summary, step)
self.writer.flush()
示例7: histo_summary
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import HistogramProto [as 別名]
def histo_summary(self, tag, values, step, bins=1000):
"""Log a histogram of the tensor of values."""
# Create a histogram using numpy
counts, bin_edges = np.histogram(values, bins=bins)
# Fill the fields of the histogram proto
hist = tf.HistogramProto()
hist.min = float(np.min(values))
hist.max = float(np.max(values))
hist.num = int(np.prod(values.shape))
hist.sum = float(np.sum(values))
hist.sum_squares = float(np.sum(values ** 2))
# Drop the start of the first bin
bin_edges = bin_edges[1:]
# Add bin edges and counts
for edge in bin_edges:
hist.bucket_limit.append(edge)
for c in counts:
hist.bucket.append(c)
# Create and write Summary
summary = tf.Summary(value=[tf.Summary.Value(tag=tag, histo=hist)])
self.writer.add_summary(summary, step)
self.writer.flush()
示例8: histo_summary
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import HistogramProto [as 別名]
def histo_summary(self, tag, values, step, bins=1000):
"""Log a histogram of the tensor of values."""
# 直方圖信息 日誌
# Create a histogram using numpy
counts, bin_edges = np.histogram(values, bins=bins)
# Fill the fields of the histogram proto
hist = tf.HistogramProto()
hist.min = float(np.min(values))
hist.max = float(np.max(values))
hist.num = int(np.prod(values.shape))
hist.sum = float(np.sum(values))
hist.sum_squares = float(np.sum(values ** 2))
# Drop the start of the first bin
bin_edges = bin_edges[1:]
# Add bin edges and counts
for edge in bin_edges:
hist.bucket_limit.append(edge)
for c in counts:
hist.bucket.append(c)
# Create and write Summary
summary = tf.Summary(value=[tf.Summary.Value(tag=tag, histo=hist)])
self.writer.add_summary(summary, step)
self.writer.flush()
示例9: histo_summary
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import HistogramProto [as 別名]
def histo_summary(self, tag, values, step, scope, bins=1000, ):
"""Log a histogram of the tensor of values."""
counts, bin_edges = np.histogram(values, bins=bins)
# Fill the fields of the histogram proto
hist = tf.HistogramProto()
hist.min = float(np.min(values))
hist.max = float(np.max(values))
hist.num = int(np.prod(values.shape))
hist.sum = float(np.sum(values))
hist.sum_squares = float(np.sum(values ** 2))
# Drop the start of the first bin
bin_edges = bin_edges[1:]
# Add bin edges and counts
for edge in bin_edges:
hist.bucket_limit.append(edge)
for c in counts:
hist.bucket.append(c)
# Create and write Summary
summary = tf.Summary(value=[tf.Summary.Value(tag=os.path.join(scope, tag), histo=hist)])
self.summary_writer.add_summary(summary, step)
self.summary_writer.flush()
# summarize tenorflow tenosrs or images or merged summary, but this requires tensorflow session run
示例10: log_histogram
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import HistogramProto [as 別名]
def log_histogram(self, tag, values, step, bins=1000):
"""Logs the histogram of a list/vector of values."""
# Create histogram using numpy
counts, bin_edges = np.histogram(values, bins=bins)
# Fill fields of histogram proto
hist = tf.HistogramProto()
hist.min = float(np.min(values))
hist.max = float(np.max(values))
hist.num = int(np.prod(values.shape))
hist.sum = float(np.sum(values))
hist.sum_squares = float(np.sum(values**2))
# Requires equal number as bins, where the first goes from -DBL_MAX to bin_edges[1]
# See https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/summary.proto#L30
# Thus, we drop the start of the first bin
bin_edges = bin_edges[1:]
# Add bin edges and counts
for edge in bin_edges:
hist.bucket_limit.append(edge)
for c in counts:
hist.bucket.append(c)
# Create and write Summary
summary = tf.Summary(value=[tf.Summary.Value(tag=tag, histo=hist)])
self.writer.add_summary(summary, step)
self.writer.flush()
示例11: log_histogram
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import HistogramProto [as 別名]
def log_histogram(self, tag, values, step, bins=1000):
"""Logs the histogram of a list/vector of values."""
# Convert to a numpy array
values = np.array(values)
# Create histogram using numpy
counts, bin_edges = np.histogram(values, bins=bins)
# Fill fields of histogram proto
hist = tf.HistogramProto()
hist.min = float(np.min(values))
hist.max = float(np.max(values))
hist.num = int(np.prod(values.shape))
hist.sum = float(np.sum(values))
hist.sum_squares = float(np.sum(values ** 2))
# Requires equal number as bins, where the first goes from -DBL_MAX to bin_edges[1]
# See https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/framework/summary.proto#L30
# Thus, we drop the start of the first bin
bin_edges = bin_edges[1:]
# Add bin edges and counts
for edge in bin_edges:
hist.bucket_limit.append(edge)
for c in counts:
hist.bucket.append(c)
# Create and write Summary
summary = tf.Summary(value=[tf.Summary.Value(tag=tag, histo=hist)])
self.writer.add_summary(summary, step)
self.writer.flush()
示例12: histogram
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import HistogramProto [as 別名]
def histogram(self, tag, values, bins, step=None):
"""Saves histogram of values.
Args:
tag: str: label for this data
values: ndarray: will be flattened by this routine
bins: number of bins in histogram, or array of bins for onp.histogram
step: int: training step
"""
if step is None:
step = self._step
else:
self._step = step
values = onp.array(values)
bins = onp.array(bins)
values = onp.reshape(values, -1)
counts, limits = onp.histogram(values, bins=bins)
# boundary logic
cum_counts = onp.cumsum(onp.greater(counts, 0, dtype=onp.int32))
start, end = onp.searchsorted(
cum_counts, [0, cum_counts[-1] - 1], side='right')
start, end = int(start), int(end) + 1
counts = (
counts[start -
1:end] if start > 0 else onp.concatenate([[0], counts[:end]]))
limits = limits[start:end + 1]
sum_sq = values.dot(values)
histo = HistogramProto(
min=values.min(),
max=values.max(),
num=len(values),
sum=values.sum(),
sum_squares=sum_sq,
bucket_limit=limits.tolist(),
bucket=counts.tolist())
summary = Summary(value=[Summary.Value(tag=tag, histo=histo)])
self.add_summary(summary, step)