當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.GraphOptions方法代碼示例

本文整理匯總了Python中tensorflow.GraphOptions方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.GraphOptions方法的具體用法?Python tensorflow.GraphOptions怎麽用?Python tensorflow.GraphOptions使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.GraphOptions方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: native_op_vs_composed_ops

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GraphOptions [as 別名]
def native_op_vs_composed_ops(batch_size, num_classes, num_samples, num_iters):
  np.random.seed(1618)  # Make it reproducible.
  shape = [batch_size, num_classes]
  logits_np = np.random.randn(*shape).astype(np.float32)

  # No CSE/CF.
  optimizer_options = tf.OptimizerOptions(opt_level=tf.OptimizerOptions.L0)
  config = tf.ConfigProto(
      graph_options=tf.GraphOptions(optimizer_options=optimizer_options))

  with tf.Session(config=config) as sess:
    logits = tf.constant(logits_np, shape=shape)
    native_op = tf.group(native_sampler(logits, num_samples))
    composed_op = tf.group(composed_sampler(logits, num_samples))

    native_dt = timeit.timeit(lambda: sess.run(native_op), number=num_iters)
    composed_dt = timeit.timeit(lambda: sess.run(composed_op), number=num_iters)
    return native_dt, composed_dt 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:20,代碼來源:multinomial_op_test.py

示例2: parameterized_vs_naive

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GraphOptions [as 別名]
def parameterized_vs_naive(shape, num_iters, use_gpu=False):
  np.random.seed(1618)  # Make it reproducible.

  # No CSE/CF.
  optimizer_options = tf.OptimizerOptions(opt_level=tf.OptimizerOptions.L0)
  config = tf.ConfigProto(
      graph_options=tf.GraphOptions(optimizer_options=optimizer_options))

  with tf.Session(config=config) as sess:
    with tf.device("/cpu:0" if not use_gpu else None):
      param_op = tf.group(random_ops.parameterized_truncated_normal(shape))
      naive_op = tf.group(random_ops.truncated_normal(shape))

    # Burn-in to avoid session setup costs in the timing.
    sess.run(param_op)
    sess.run(param_op)
    param_dt = timeit.timeit(lambda: sess.run(param_op), number=num_iters)
    sess.run(naive_op)
    sess.run(naive_op)
    naive_dt = timeit.timeit(lambda: sess.run(naive_op), number=num_iters)
    return param_dt, naive_dt 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:23,代碼來源:parameterized_truncated_normal_op_test.py

示例3: testTanhSymGrad

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GraphOptions [as 別名]
def testTanhSymGrad(self):

    @function.Defun(tf.float32)
    def Forward(x):
      return tf.reduce_sum(tf.tanh(x))

    g = tf.Graph()
    with g.as_default():
      x = tf.placeholder(tf.float32)
      y = Forward(x)
      dx = tf.gradients([y], [x])

    inp = np.array([-1, 1, 2, -2], dtype=np.float32)
    feed = {x: inp}
    cfg = tf.ConfigProto(graph_options=tf.GraphOptions(
        optimizer_options=tf.OptimizerOptions(
            opt_level=tf.OptimizerOptions.L1, do_function_inlining=True)))
    with tf.Session(graph=g, config=cfg) as sess:
      out, = sess.run(dx, feed)
    self.assertAllClose(1 - np.square(np.tanh(inp)), out) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:22,代碼來源:function_test.py

示例4: _session_config

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GraphOptions [as 別名]
def _session_config(self):
        """Creates the session config with t2t default parameters."""
        graph_options = tf.GraphOptions(optimizer_options=tf.OptimizerOptions(
            opt_level=tf.OptimizerOptions.L1, do_function_inlining=False))
        if self._single_cpu_thread:
            config = tf.ConfigProto(
                intra_op_parallelism_threads=1,
                inter_op_parallelism_threads=1,
                allow_soft_placement=True,
                graph_options=graph_options,
                log_device_placement=False)
        else:
            gpu_options = tf.GPUOptions(
                per_process_gpu_memory_fraction=0.95)
            config = tf.ConfigProto(
                allow_soft_placement=True,
                graph_options=graph_options,
                gpu_options=gpu_options,
                log_device_placement=False)
        return config 
開發者ID:ucam-smt,項目名稱:sgnmt,代碼行數:22,代碼來源:tf_nizza.py

示例5: create_session_config

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GraphOptions [as 別名]
def create_session_config(log_device_placement=False,
                          enable_graph_rewriter=False,
                          gpu_mem_fraction=0.95,
                          use_tpu=False,
                          inter_op_parallelism_threads=0,
                          intra_op_parallelism_threads=0):
  """The TensorFlow Session config to use."""
  if use_tpu:
    graph_options = tf.GraphOptions()
  else:
    if enable_graph_rewriter:
      rewrite_options = rewriter_config_pb2.RewriterConfig()
      rewrite_options.layout_optimizer = rewriter_config_pb2.RewriterConfig.ON
      graph_options = tf.GraphOptions(rewrite_options=rewrite_options)
    else:
      graph_options = tf.GraphOptions(
          optimizer_options=tf.OptimizerOptions(
              opt_level=tf.OptimizerOptions.L1, do_function_inlining=False))

  gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_mem_fraction)

  config = tf.ConfigProto(
      allow_soft_placement=True,
      graph_options=graph_options,
      gpu_options=gpu_options,
      log_device_placement=log_device_placement,
      inter_op_parallelism_threads=inter_op_parallelism_threads,
      intra_op_parallelism_threads=intra_op_parallelism_threads)
  return config 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:31,代碼來源:trainer_lib.py

示例6: _add_infer_shapes

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GraphOptions [as 別名]
def _add_infer_shapes(graph_def):
    with tf.Graph().as_default():
      with tf.Session(
          config=tf.ConfigProto(
              graph_options=tf.GraphOptions(infer_shapes=True))) as sess:
        tf.import_graph_def(graph_def, name="")
      return sess.graph_def 
開發者ID:onnx,項目名稱:onnx-tensorflow,代碼行數:9,代碼來源:pb_wrapper.py

示例7: create_session_config

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GraphOptions [as 別名]
def create_session_config(log_device_placement=False,
                          enable_graph_rewriter=False,
                          gpu_mem_fraction=0.95,
                          use_tpu=False,
                          xla_jit_level=tf.OptimizerOptions.OFF,
                          inter_op_parallelism_threads=0,
                          intra_op_parallelism_threads=0):
  """The TensorFlow Session config to use."""
  if use_tpu:
    graph_options = tf.GraphOptions()
  else:
    if enable_graph_rewriter:
      rewrite_options = rewriter_config_pb2.RewriterConfig()
      rewrite_options.layout_optimizer = rewriter_config_pb2.RewriterConfig.ON
      graph_options = tf.GraphOptions(rewrite_options=rewrite_options)
    else:
      graph_options = tf.GraphOptions(
          optimizer_options=tf.OptimizerOptions(
              opt_level=tf.OptimizerOptions.L1,
              do_function_inlining=False,
              global_jit_level=xla_jit_level))

  gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_mem_fraction)

  config = tf.ConfigProto(
      allow_soft_placement=True,
      graph_options=graph_options,
      gpu_options=gpu_options,
      log_device_placement=log_device_placement,
      inter_op_parallelism_threads=inter_op_parallelism_threads,
      intra_op_parallelism_threads=intra_op_parallelism_threads,
      isolate_session_state=True)
  return config 
開發者ID:yyht,項目名稱:BERT,代碼行數:35,代碼來源:trainer_lib.py

示例8: session_config

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GraphOptions [as 別名]
def session_config(params):
    optimizer_options = tf.OptimizerOptions(opt_level=tf.OptimizerOptions.L1,
                                            do_function_inlining=True)
    graph_options = tf.GraphOptions(optimizer_options=optimizer_options)
    config = tf.ConfigProto(allow_soft_placement=True,
                            graph_options=graph_options)

    if distribute.is_distributed_training_mode():
        config.gpu_options.visible_device_list = str(distribute.local_rank())
    elif params.device_list:
        device_str = ",".join([str(i) for i in params.device_list])
        config.gpu_options.visible_device_list = device_str

    return config 
開發者ID:THUNLP-MT,項目名稱:THUMT,代碼行數:16,代碼來源:trainer.py

示例9: session_config

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GraphOptions [as 別名]
def session_config(params):
    optimizer_options = tf.OptimizerOptions(opt_level=tf.OptimizerOptions.L1,
                                            do_function_inlining=False)
    graph_options = tf.GraphOptions(optimizer_options=optimizer_options)
    config = tf.ConfigProto(allow_soft_placement=True,
                            graph_options=graph_options,
                            intra_op_parallelism_threads=16,
                            inter_op_parallelism_threads=16)
    if params.device_list:
        device_str = ",".join([str(i) for i in params.device_list])
        config.gpu_options.visible_device_list = device_str

    return config 
開發者ID:THUNLP-MT,項目名稱:THUMT,代碼行數:15,代碼來源:get_relevance.py

示例10: session_config

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GraphOptions [as 別名]
def session_config(params):
    optimizer_options = tf.OptimizerOptions(opt_level=tf.OptimizerOptions.L1,
                                            do_function_inlining=False)
    graph_options = tf.GraphOptions(optimizer_options=optimizer_options)
    config = tf.ConfigProto(allow_soft_placement=True,
                            graph_options=graph_options)
    if params.device_list:
        device_str = ",".join([str(i) for i in params.device_list])
        config.gpu_options.visible_device_list = device_str

    return config 
開發者ID:THUNLP-MT,項目名稱:THUMT,代碼行數:13,代碼來源:translator.py

示例11: session_config

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GraphOptions [as 別名]
def session_config(params):
    optimizer_options = tf.OptimizerOptions(opt_level=tf.OptimizerOptions.L1,
                                            do_function_inlining=True)
    graph_options = tf.GraphOptions(optimizer_options=optimizer_options)
    config = tf.ConfigProto(allow_soft_placement=True,
                            graph_options=graph_options)
    if params.device_list:
        device_str = ",".join([str(i) for i in params.device_list])
        config.gpu_options.visible_device_list = device_str

    return config 
開發者ID:Imagist-Shuo,項目名稱:UNMT-SPR,代碼行數:13,代碼來源:train.py

示例12: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GraphOptions [as 別名]
def __init__(self, iterations):
    tf.logging.info("TrainLowLevelRunner: constructor")

    self.feature_structure = {}
    self.loss = None
    self.infeed_queue = []
    self.enqueue_ops = []
    self.dataset_initializer = []
    self.iterations = iterations
    self.num_hosts = FLAGS.num_shards // FLAGS.num_shards_per_host
    self.scaffold_fn = None
    # Having two separate sessions and graphs to make the initialization faster.
    self.input_sess = None
    self.train_sess = None
    self.input_graph = tf.Graph()
    self.train_graph = None
    self.tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
        FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)
    # Disable grappler for better performance.
    self.session_config = tf.ConfigProto(
        allow_soft_placement=True,
        graph_options=tf.GraphOptions(
            rewrite_options=rewriter_config_pb2.RewriterConfig(
                disable_meta_optimizer=True)),
        isolate_session_state=True)
    cluster_spec = self.tpu_cluster_resolver.cluster_spec()
    if cluster_spec:
      self.session_config.cluster_def.CopyFrom(cluster_spec.as_cluster_def())
    self.tpu_init = [tpu.initialize_system()]
    self.tpu_shutdown = tpu.shutdown_system()
    self.init_sess = tf.Session(self.tpu_cluster_resolver.get_master(),
                                config=self.session_config)
    self.init_sess.run(self.tpu_init)
    self.queue = Queue.Queue() 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:36,代碼來源:train_low_level_runner.py

示例13: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GraphOptions [as 別名]
def __init__(self, iterations, train_steps):
    tf.logging.info("TrainRunner: constructor")
    self.feature_structure = {}
    self.loss = None
    self.infeed_queue = []
    self.enqueue_ops = []
    self.dataset_initializer = []
    self.iterations = iterations
    self.sess = None
    self.input_sess = None
    self.infeed_thread = None
    if train_steps % iterations != 0:
      train_steps = iterations * int(math.ceil(train_steps / iterations))
    self.train_steps = train_steps
    self.input_graph = tf.Graph()
    tpu_init = [tpu.initialize_system()]
    self.tpu_shutdown = tpu.shutdown_system()
    self.cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
        FLAGS.tpu, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)
    self.config = tf.ConfigProto(operation_timeout_in_ms=600 * 60 * 1000,
                                 graph_options=tf.GraphOptions(
                                     rewrite_options=rewriter_config_pb2.RewriterConfig(
                                         disable_meta_optimizer=True)),
                                 isolate_session_state=True)
    cluster_spec = self.cluster_resolver.cluster_spec()
    if cluster_spec:
      self.config.cluster_def.CopyFrom(cluster_spec.as_cluster_def())
    self.init_sess = tf.Session(self.cluster_resolver.get_master(), config=self.config)
    self.init_sess.run(tpu_init) 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:31,代碼來源:train_runner.py

示例14: create_session_config

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GraphOptions [as 別名]
def create_session_config(log_device_placement=False,
                          enable_graph_rewriter=False,
                          gpu_mem_fraction=0.95,
                          use_tpu=False,
                          xla_jit_level=tf.OptimizerOptions.OFF,
                          inter_op_parallelism_threads=0,
                          intra_op_parallelism_threads=0):
  """The TensorFlow Session config to use."""
  if use_tpu:
    graph_options = tf.GraphOptions()
  else:
    if enable_graph_rewriter:
      rewrite_options = rewriter_config_pb2.RewriterConfig()
      rewrite_options.layout_optimizer = rewriter_config_pb2.RewriterConfig.ON
      graph_options = tf.GraphOptions(rewrite_options=rewrite_options)
    else:
      graph_options = tf.GraphOptions(
          optimizer_options=tf.OptimizerOptions(
              opt_level=tf.OptimizerOptions.L1,
              do_function_inlining=False,
              global_jit_level=xla_jit_level))

  gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_mem_fraction)

  config = tf.ConfigProto(
      allow_soft_placement=True,
      graph_options=graph_options,
      gpu_options=gpu_options,
      log_device_placement=log_device_placement,
      inter_op_parallelism_threads=inter_op_parallelism_threads,
      intra_op_parallelism_threads=intra_op_parallelism_threads)
  return config 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:34,代碼來源:trainer_lib.py

示例15: _OptimizerOptions

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GraphOptions [as 別名]
def _OptimizerOptions():
  for cse in [False, True]:
    for inline in [False, True]:
      for cfold in [False, True]:
        yield tf.ConfigProto(graph_options=tf.GraphOptions(
            optimizer_options=tf.OptimizerOptions(
                opt_level=tf.OptimizerOptions.L0,
                do_common_subexpression_elimination=cse,
                do_function_inlining=inline,
                do_constant_folding=cfold))) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:12,代碼來源:function_test.py


注:本文中的tensorflow.GraphOptions方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。