本文整理匯總了Python中tensorflow.GraphDef方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.GraphDef方法的具體用法?Python tensorflow.GraphDef怎麽用?Python tensorflow.GraphDef使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.GraphDef方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: load_graph
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GraphDef [as 別名]
def load_graph(frozen_graph_filename):
# We load the protobuf file from the disk and parse it to retrieve the
# unserialized graph_def
with tf.gfile.GFile(frozen_graph_filename, "rb") as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
# Then, we can use again a convenient built-in function to import a graph_def into the
# current default Graph
with tf.Graph().as_default() as graph:
tf.import_graph_def(
graph_def,
input_map=None,
return_elements=None,
name="",
op_dict=None,
producer_op_list=None
)
return graph
示例2: build_from_pb
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GraphDef [as 別名]
def build_from_pb(self):
with tf.gfile.FastGFile(self.FLAGS.pbLoad, "rb") as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
tf.import_graph_def(
graph_def,
name=""
)
with open(self.FLAGS.metaLoad, 'r') as fp:
self.meta = json.load(fp)
self.framework = create_framework(self.meta, self.FLAGS)
# Placeholders
self.inp = tf.get_default_graph().get_tensor_by_name('input:0')
self.feed = dict() # other placeholders
self.out = tf.get_default_graph().get_tensor_by_name('output:0')
self.setup_meta_ops()
示例3: build_from_pb
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GraphDef [as 別名]
def build_from_pb(self):
with tf.gfile.FastGFile(self.FLAGS.pbLoad, "rb") as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
tf.import_graph_def(
graph_def,
name=""
)
with open(self.FLAGS.metaLoad, 'r') as fp:
self.meta = json.load(fp)
self.framework = create_framework(self.meta, self.FLAGS)
# Placeholders
self.inp = tf.get_default_graph().get_tensor_by_name('input:0')
self.feed = dict() # other placeholders
self.out = tf.get_default_graph().get_tensor_by_name('output:0')
self.setup_meta_ops()
示例4: worker
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GraphDef [as 別名]
def worker(input_q, output_q):
# Load a (frozen) Tensorflow model into memory.
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
sess = tf.Session(graph=detection_graph)
fps = FPS().start()
while True:
fps.update()
frame = input_q.get()
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
output_q.put(detect_objects(frame_rgb, sess, detection_graph))
fps.stop()
sess.close()
示例5: __init__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GraphDef [as 別名]
def __init__(self, checkpoint_filename, input_name="images",
output_name="features"):
self.session = tf.Session()
with tf.gfile.GFile(checkpoint_filename, "rb") as file_handle:
graph_def = tf.GraphDef()
graph_def.ParseFromString(file_handle.read())
tf.import_graph_def(graph_def, name="net")
self.input_var = tf.get_default_graph().get_tensor_by_name(
"net/%s:0" % input_name)
self.output_var = tf.get_default_graph().get_tensor_by_name(
"net/%s:0" % output_name)
assert len(self.output_var.get_shape()) == 2
assert len(self.input_var.get_shape()) == 4
self.feature_dim = self.output_var.get_shape().as_list()[-1]
self.image_shape = self.input_var.get_shape().as_list()[1:]
示例6: create_inception_graph
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GraphDef [as 別名]
def create_inception_graph():
""""Creates a graph from saved GraphDef file and returns a Graph object.
Returns:
Graph holding the trained Inception network, and various tensors we'll be
manipulating.
"""
with tf.Graph().as_default() as graph:
model_filename = os.path.join(
FLAGS.model_dir, 'classify_image_graph_def.pb')
with gfile.FastGFile(model_filename, 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
bottleneck_tensor, jpeg_data_tensor, resized_input_tensor = (
tf.import_graph_def(graph_def, name='', return_elements=[
BOTTLENECK_TENSOR_NAME, JPEG_DATA_TENSOR_NAME,
RESIZED_INPUT_TENSOR_NAME]))
return graph, bottleneck_tensor, jpeg_data_tensor, resized_input_tensor
示例7: _import_graph_and_run_inference
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GraphDef [as 別名]
def _import_graph_and_run_inference(self, tflite_graph_file, num_channels=3):
"""Imports a tflite graph, runs single inference and returns outputs."""
graph = tf.Graph()
with graph.as_default():
graph_def = tf.GraphDef()
with tf.gfile.Open(tflite_graph_file) as f:
graph_def.ParseFromString(f.read())
tf.import_graph_def(graph_def, name='')
input_tensor = graph.get_tensor_by_name('normalized_input_image_tensor:0')
box_encodings = graph.get_tensor_by_name('raw_outputs/box_encodings:0')
class_predictions = graph.get_tensor_by_name(
'raw_outputs/class_predictions:0')
with self.test_session(graph) as sess:
[box_encodings_np, class_predictions_np] = sess.run(
[box_encodings, class_predictions],
feed_dict={input_tensor: np.random.rand(1, 10, 10, num_channels)})
return box_encodings_np, class_predictions_np
示例8: fromGraphDef
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GraphDef [as 別名]
def fromGraphDef(cls, graph_def, feed_names, fetch_names):
"""
Construct a TFInputGraph from a tf.GraphDef object.
:param graph_def: :py:class:`tf.GraphDef`, a serializable object containing the topology and
computation units of the TensorFlow graph.
:param feed_names: list, names of the input tensors.
:param fetch_names: list, names of the output tensors.
"""
assert isinstance(graph_def, tf.GraphDef), \
('expect tf.GraphDef type but got', type(graph_def))
graph = tf.Graph()
with tf.Session(graph=graph) as sess:
tf.import_graph_def(graph_def, name='')
return _build_with_feeds_fetches(sess=sess, graph=graph, feed_names=feed_names,
fetch_names=fetch_names)
示例9: inference
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GraphDef [as 別名]
def inference():
graph = tf.Graph()
with graph.as_default():
with tf.gfile.FastGFile(FLAGS.input, 'rb') as f:
image_data = f.read()
input_image = tf.image.decode_jpeg(image_data, channels=3)
input_image = tf.image.resize_images(input_image, size=(FLAGS.image_size, FLAGS.image_size))
input_image = utils.convert2float(input_image)
input_image.set_shape([FLAGS.image_size, FLAGS.image_size, 3])
with tf.gfile.FastGFile(FLAGS.model, 'rb') as model_file:
graph_def = tf.GraphDef()
graph_def.ParseFromString(model_file.read())
[output_image] = tf.import_graph_def(graph_def,
input_map={'input_image': input_image},
return_elements=['output_image:0'],
name='output')
with tf.Session(graph=graph) as sess:
generated = output_image.eval()
with open(FLAGS.output, 'wb') as f:
f.write(generated)
示例10: load_graph
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GraphDef [as 別名]
def load_graph(frozen_graph_file):
# we parse the graph_def file
with tf.gfile.GFile(frozen_graph_file, 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
# we load the graph_def in the default graph
with tf.Graph().as_default() as graph:
tf.import_graph_def(graph_def,
input_map=None,
return_elements=None,
name="",
op_dict=None,
producer_op_list=None)
return graph
示例11: load_inference_graph
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GraphDef [as 別名]
def load_inference_graph():
# load frozen tensorflow model into memory
print("> ====== loading HAND frozen graph into memory")
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
sess = tf.Session(graph=detection_graph)
print("> ====== Hand Inference graph loaded.")
return detection_graph, sess
# draw the detected bounding boxes on the images
# You can modify this to also draw a label.
示例12: create_inception_graph
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GraphDef [as 別名]
def create_inception_graph():
""""Creates a graph from saved GraphDef file and returns a Graph object.
Returns:
Graph holding the trained Inception network, and various tensors we'll be
manipulating.
"""
with tf.Session() as sess:
model_filename = os.path.join(
FLAGS.model_dir, 'classify_image_graph_def.pb')
with gfile.FastGFile(model_filename, 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
bottleneck_tensor, jpeg_data_tensor, resized_input_tensor = (
tf.import_graph_def(graph_def, name='', return_elements=[
BOTTLENECK_TENSOR_NAME, JPEG_DATA_TENSOR_NAME,
RESIZED_INPUT_TENSOR_NAME]))
return sess.graph, bottleneck_tensor, jpeg_data_tensor, resized_input_tensor
示例13: load_model
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GraphDef [as 別名]
def load_model(model, input_map=None):
# Check if the model is a model directory (containing a metagraph and a checkpoint file)
# or if it is a protobuf file with a frozen graph
model_exp = os.path.expanduser(model)
if (os.path.isfile(model_exp)):
print('Model filename: %s' % model_exp)
with gfile.FastGFile(model_exp,'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
tf.import_graph_def(graph_def, input_map=input_map, name='')
else:
print('Model directory: %s' % model_exp)
meta_file, ckpt_file = get_model_filenames(model_exp)
print('Metagraph file: %s' % meta_file)
print('Checkpoint file: %s' % ckpt_file)
saver = tf.train.import_meta_graph(os.path.join(model_exp, meta_file), input_map=input_map)
saver.restore(tf.get_default_session(), os.path.join(model_exp, ckpt_file))
示例14: __init__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GraphDef [as 別名]
def __init__(self, PATH_TO_CKPT):
"""Tensorflow detector
"""
self.detection_graph = tf.Graph()
with self.detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
with self.detection_graph.as_default():
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with tf.Session(graph=self.detection_graph, config=config) as self.sess:
self.windowNotSet = True
示例15: load_model
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GraphDef [as 別名]
def load_model(self):
"""
Loads the detection model
Args:
Returns:
"""
with self._detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(self._path_to_ckpt, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
label_map = label_map_util.load_labelmap(self._path_to_labels)
categories = label_map_util.convert_label_map_to_categories(\
label_map, max_num_classes=self._num_classes, use_display_name=True)
self.category_index = label_map_util.create_category_index(categories)