本文整理匯總了Python中tensorflow.GradientTape方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.GradientTape方法的具體用法?Python tensorflow.GradientTape怎麽用?Python tensorflow.GradientTape使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.GradientTape方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: pretrain_step
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GradientTape [as 別名]
def pretrain_step(model, x, y):
"""
Single step of generator pre-training.
Args:
model: A model object with a tf keras compiled generator.
x: The low resolution image tensor.
y: The high resolution image tensor.
"""
with tf.GradientTape() as tape:
fake_hr = model.generator(x)
loss_mse = tf.keras.losses.MeanSquaredError()(y, fake_hr)
grads = tape.gradient(loss_mse, model.generator.trainable_variables)
model.gen_optimizer.apply_gradients(zip(grads, model.generator.trainable_variables))
return loss_mse
示例2: _compute_meta_loss
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GradientTape [as 別名]
def _compute_meta_loss(self, inputs, inputs2, variables):
"""This is called during fitting to compute the meta-loss (the loss after a
few steps of optimization), and its gradient.
"""
updated_variables = variables
with tf.GradientTape() as meta_tape:
for k in range(self.optimization_steps):
with tf.GradientTape() as tape:
loss, _ = self.learner.compute_model(inputs, updated_variables, True)
gradients = tape.gradient(loss, updated_variables)
updated_variables = [
v if g is None else v - self.learning_rate * g
for v, g in zip(updated_variables, gradients)
]
meta_loss, _ = self.learner.compute_model(inputs2, updated_variables,
True)
meta_gradients = meta_tape.gradient(meta_loss, variables)
return meta_loss, meta_gradients
示例3: train_on_current_task
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GradientTape [as 別名]
def train_on_current_task(self, optimization_steps=1, restore=True):
"""Perform a few steps of gradient descent to fine tune the model on the current task.
Parameters
----------
optimization_steps: int
the number of steps of gradient descent to perform
restore: bool
if True, restore the model from the most recent checkpoint before optimizing
"""
if restore:
self.restore()
variables = self.learner.variables
for i in range(optimization_steps):
inputs = self.learner.get_batch()
with tf.GradientTape() as tape:
loss, _ = self.learner.compute_model(inputs, variables, True)
gradients = tape.gradient(loss, variables)
self._tf_task_optimizer.apply_gradients(zip(gradients, variables))
示例4: _create_gradient_fn
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GradientTape [as 別名]
def _create_gradient_fn(self, variables):
"""Create a function that computes gradients and applies them to the model.
Because of the way TensorFlow function tracing works, we need to create a
separate function for each new set of variables.
"""
@tf.function(experimental_relax_shapes=True)
def apply_gradient_for_batch(inputs, labels, weights, loss):
with tf.GradientTape() as tape:
outputs = self.model(inputs, training=True)
if isinstance(outputs, tf.Tensor):
outputs = [outputs]
if self._loss_outputs is not None:
outputs = [outputs[i] for i in self._loss_outputs]
batch_loss = loss(outputs, labels, weights)
if variables is None:
vars = self.model.trainable_variables
else:
vars = variables
grads = tape.gradient(batch_loss, vars)
self._tf_optimizer.apply_gradients(zip(grads, vars))
self._global_step.assign_add(1)
return batch_loss
return apply_gradient_for_batch
示例5: call
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GradientTape [as 別名]
def call(self, inputs, conditional_inputs):
with tf.GradientTape() as tape:
for layer in inputs:
tape.watch(layer)
output = self.discriminator(_list_or_tensor(inputs + conditional_inputs))
gradients = tape.gradient(output, inputs)
gradients = [g for g in gradients if g is not None]
if len(gradients) > 0:
norm2 = 0.0
for g in gradients:
g2 = tf.square(g)
dims = len(g.shape)
if dims > 1:
g2 = tf.reduce_sum(g2, axis=list(range(1, dims)))
norm2 += g2
penalty = tf.square(tf.sqrt(norm2) - 1.0)
penalty = self.gan.gradient_penalty * tf.reduce_mean(penalty)
else:
penalty = 0.0
return [output, penalty]
示例6: _train_body
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GradientTape [as 別名]
def _train_body(self, agent_states, agent_next_states, expert_states, expert_next_states):
epsilon = 1e-8
with tf.device(self.device):
with tf.GradientTape() as tape:
real_logits = self.disc([expert_states, expert_next_states])
fake_logits = self.disc([agent_states, agent_next_states])
loss = -(tf.reduce_mean(tf.math.log(real_logits + epsilon)) +
tf.reduce_mean(tf.math.log(1. - fake_logits + epsilon)))
grads = tape.gradient(loss, self.disc.trainable_variables)
self.optimizer.apply_gradients(
zip(grads, self.disc.trainable_variables))
accuracy = \
tf.reduce_mean(tf.cast(real_logits >= 0.5, tf.float32)) / 2. + \
tf.reduce_mean(tf.cast(fake_logits < 0.5, tf.float32)) / 2.
js_divergence = self._compute_js_divergence(
fake_logits, real_logits)
return loss, accuracy, js_divergence
示例7: _train_body
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GradientTape [as 別名]
def _train_body(self, states, actions, next_states, rewards, done, weights):
with tf.device(self.device):
with tf.GradientTape() as tape:
if self._enable_categorical_dqn:
td_errors = self._compute_td_error_body_distributional(
states, actions, next_states, rewards, done)
q_func_loss = tf.reduce_mean(
huber_loss(tf.negative(td_errors),
delta=self.max_grad) * weights)
else:
td_errors = self._compute_td_error_body(
states, actions, next_states, rewards, done)
q_func_loss = tf.reduce_mean(
huber_loss(td_errors,
delta=self.max_grad) * weights)
q_func_grad = tape.gradient(
q_func_loss, self.q_func.trainable_variables)
self.q_func_optimizer.apply_gradients(
zip(q_func_grad, self.q_func.trainable_variables))
return td_errors, q_func_loss
示例8: _train_body
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GradientTape [as 別名]
def _train_body(self, agent_states, agent_acts, expert_states, expert_acts):
epsilon = 1e-8
with tf.device(self.device):
with tf.GradientTape() as tape:
real_logits = self.disc([expert_states, expert_acts])
fake_logits = self.disc([agent_states, agent_acts])
loss = -(tf.reduce_mean(tf.math.log(real_logits + epsilon)) +
tf.reduce_mean(tf.math.log(1. - fake_logits + epsilon)))
grads = tape.gradient(loss, self.disc.trainable_variables)
self.optimizer.apply_gradients(
zip(grads, self.disc.trainable_variables))
accuracy = \
tf.reduce_mean(tf.cast(real_logits >= 0.5, tf.float32)) / 2. + \
tf.reduce_mean(tf.cast(fake_logits < 0.5, tf.float32)) / 2.
js_divergence = self._compute_js_divergence(
fake_logits, real_logits)
return loss, accuracy, js_divergence
示例9: test_swish_grad
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GradientTape [as 別名]
def test_swish_grad(self):
def swish_grad(x, beta):
return (
beta * (2 - beta * x * np.tanh(beta * x / 2)) / (1 + np.cosh(beta * x))
)
x = testing_utils.generate_real_values_with_zeros(shape=(8, 3, 3, 16))
tf_x = tf.Variable(x)
with tf.GradientTape() as tape:
activation = lq.quantizers.SwishSign()(tf_x)
grad = tape.gradient(activation, tf_x)
np.testing.assert_allclose(grad.numpy(), swish_grad(x, beta=5.0))
with tf.GradientTape() as tape:
activation = lq.quantizers.SwishSign(beta=10.0)(tf_x)
grad = tape.gradient(activation, tf_x)
np.testing.assert_allclose(grad.numpy(), swish_grad(x, beta=10.0))
示例10: testSparseGaussianProcess
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GradientTape [as 別名]
def testSparseGaussianProcess(self):
dataset_size = 10
batch_size = 3
input_dim = 4
output_dim = 5
features = tf.to_float(np.random.rand(batch_size, input_dim))
labels = tf.to_float(np.random.rand(batch_size, output_dim))
model = gaussian_process.SparseGaussianProcess(output_dim, num_inducing=2)
with tf.GradientTape() as tape:
predictions = model(features)
nll = -tf.reduce_mean(predictions.distribution.log_prob(labels))
kl = sum(model.losses) / dataset_size
loss = nll + kl
self.evaluate(tf.global_variables_initializer())
grads = tape.gradient(nll, model.variables)
for grad in grads:
self.assertIsNotNone(grad)
loss_val, predictions_val = self.evaluate([loss, predictions])
self.assertEqual(loss_val.shape, ())
self.assertGreaterEqual(loss_val, 0.)
self.assertEqual(predictions_val.shape, (batch_size, output_dim))
示例11: wrapped_tf_function
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GradientTape [as 別名]
def wrapped_tf_function(points, label):
"""Performs one step of minimization of the loss."""
# --- subsampling (order DO matter)
points = points[0:FLAGS.num_points, ...]
# --- augmentation
if FLAGS.augment:
points = tf.map_fn(augment.rotate, points)
points = augment.jitter(points)
# --- training
with tf.GradientTape() as tape:
logits = model(points, training=True)
loss = model.loss(label, logits)
variables = model.trainable_variables
gradients = tape.gradient(loss, variables)
optimizer.apply_gradients(zip(gradients, variables))
return loss
示例12: train_step
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GradientTape [as 別名]
def train_step(self, inputs):
"""One train step.
Args:
inputs: one batch input.
Returns:
loss: Scaled loss.
"""
image, label = inputs
with tf.GradientTape() as tape:
predictions = self.model(image, training=True)
loss = self.compute_loss(predictions,label,training=True)
gradients = tape.gradient(loss, self.model.trainable_variables)
gradients = [(tf.clip_by_value(grad, -5.0, 5.0))
for grad in gradients]
self.optimizer.apply_gradients(zip(gradients,
self.model.trainable_variables))
return loss
示例13: train_step
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GradientTape [as 別名]
def train_step(self, inp, tar):
tar_inp = tar[:, :-1]
tar_real = tar[:, 1:]
enc_padding_mask, combined_mask, dec_padding_mask = self.mask_encoder.create_masks(inp, tar_inp)
with tf.GradientTape() as tape:
predictions, _ = self.transformer(inp, tar_inp,
True,
enc_padding_mask,
combined_mask,
dec_padding_mask)
loss = self.loss_function(tar_real, predictions)
gradients = tape.gradient(loss, self.transformer.trainable_variables)
self.optimizer.apply_gradients(zip(gradients, self.transformer.trainable_variables))
self.train_loss(loss)
self.train_accuracy(tar_real, predictions)
示例14: verify_funcs_are_equivalent
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GradientTape [as 別名]
def verify_funcs_are_equivalent(dtype):
x_np = np.random.uniform(-10, 10, size=(4, 4)).astype(dtype)
x = tf.convert_to_tensor(x_np)
lower = np.random.uniform(-10, 10)
upper = lower + np.random.uniform(0, 10)
with tf.GradientTape(persistent=True) as t:
t.watch(x)
y_native = _hardshrink_custom_op(x, lower, upper)
y_py = _hardshrink_py(x, lower, upper)
test_utils.assert_allclose_according_to_type(y_native, y_py)
grad_native = t.gradient(y_native, x)
grad_py = t.gradient(y_py, x)
test_utils.assert_allclose_according_to_type(grad_native, grad_py)
示例15: verify_funcs_are_equivalent
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GradientTape [as 別名]
def verify_funcs_are_equivalent(dtype):
x_np = np.random.uniform(-10, 10, size=(4, 4)).astype(dtype)
x = tf.convert_to_tensor(x_np)
lower = np.random.uniform(-10, 10)
upper = lower + np.random.uniform(0, 10)
with tf.GradientTape(persistent=True) as t:
t.watch(x)
y_native = softshrink(x, lower, upper)
y_py = _softshrink_py(x, lower, upper)
test_utils.assert_allclose_according_to_type(y_native, y_py)
grad_native = t.gradient(y_native, x)
grad_py = t.gradient(y_py, x)
test_utils.assert_allclose_according_to_type(grad_native, grad_py)