當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.GPUOptions方法代碼示例

本文整理匯總了Python中tensorflow.GPUOptions方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.GPUOptions方法的具體用法?Python tensorflow.GPUOptions怎麽用?Python tensorflow.GPUOptions使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.GPUOptions方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _get_run_config

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GPUOptions [as 別名]
def _get_run_config(config):
    gpu_options = tf.GPUOptions(
        per_process_gpu_memory_fraction=\
                config['per_process_gpu_memory_fraction'],
        allow_growth=config['gpu_allow_growth'])
    sess_config = tf.ConfigProto(
        gpu_options=gpu_options,
        log_device_placement=config['log_device_placement'])

    run_config = tf.estimator.RunConfig(
        model_dir=config['model_dir'],
        tf_random_seed=config['tf_random_seed'],
        save_summary_steps=config['save_summary_steps'],
        save_checkpoints_steps=config['save_checkpoints_steps'],
        save_checkpoints_secs=config['save_checkpoints_secs'],
        keep_checkpoint_max=config['keep_checkpoint_max'],
        keep_checkpoint_every_n_hours=config['keep_checkpoint_every_n_hours'],
        log_step_count_steps=config['log_step_count_steps'],
        session_config=sess_config)

    return run_config 
開發者ID:qkaren,項目名稱:Counterfactual-StoryRW,代碼行數:23,代碼來源:train.py

示例2: create_session_config

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GPUOptions [as 別名]
def create_session_config(self):
    """create session_config
    """
    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.95,
                                allow_growth=True)

    # set number of GPU devices
    device_count = {"GPU": self.config.gpu_count}

    session_config = tf.ConfigProto(
      allow_soft_placement=True,
      log_device_placement=False,
      device_count=device_count,
      gpu_options=gpu_options)

    return session_config 
開發者ID:lambdal,項目名稱:lambda-deep-learning-demo,代碼行數:18,代碼來源:runner.py

示例3: get_session

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GPUOptions [as 別名]
def get_session():
    tf.reset_default_graph()
    tf_config = tf.ConfigProto(
        inter_op_parallelism_threads=1,
        intra_op_parallelism_threads=1)

    # This was the default provided in the starter code.
    #session = tf.Session(config=tf_config)

    # Use this if I want to see what is on the GPU.
    #session = tf.Session(config=tf.ConfigProto(log_device_placement=True))

    # Use this for limiting memory allocated for the GPU.
    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.5)
    session = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))

    print("AVAILABLE GPUS: ", get_available_gpus())
    return session 
開發者ID:DanielTakeshi,項目名稱:rl_algorithms,代碼行數:20,代碼來源:run_dqn_atari.py

示例4: load_yaw_variables

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GPUOptions [as 別名]
def load_yaw_variables(self, YawFilePath):
        """ Load varibles from a checkpoint file

        @param YawFilePath Path to a valid checkpoint
        """

        #It is possible to use the checkpoint file
        #y_ckpt = tf.train.get_checkpoint_state(YawFilePath)
        #.restore(self._sess, y_ckpt.model_checkpoint_path) 

        #For future use, allocating a fraction of the GPU
        #gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.5) #Allocate only half of the GPU memory

        if(os.path.isfile(YawFilePath)==False): raise ValueError('[DEEPGAZE] CnnHeadPoseEstimator: the yaw file path is incorrect.')

        tf.train.Saver(({"conv1_yaw_w": self.hy_conv1_weights, "conv1_yaw_b": self.hy_conv1_biases,
                         "conv2_yaw_w": self.hy_conv2_weights, "conv2_yaw_b": self.hy_conv2_biases,
                         "conv3_yaw_w": self.hy_conv3_weights, "conv3_yaw_b": self.hy_conv3_biases,
                         "dense1_yaw_w": self.hy_dense1_weights, "dense1_yaw_b": self.hy_dense1_biases,
                         "out_yaw_w": self.hy_out_weights, "out_yaw_b": self.hy_out_biases
                        })).restore(self._sess, YawFilePath) 
開發者ID:mpatacchiola,項目名稱:pyERA,代碼行數:23,代碼來源:head_pose_estimation.py

示例5: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GPUOptions [as 別名]
def __init__(self, cluster, task, train_dir, log_device_placement=True):
    """"Creates a Trainer.

    Args:
      cluster: A tf.train.ClusterSpec if the execution is distributed.
        None otherwise.
      task: A TaskSpec describing the job type and the task index.
    """

    self.cluster = cluster
    self.task = task
    self.is_master = (task.type == "master" and task.index == 0)
    self.train_dir = train_dir
    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=FLAGS.gpu)
    self.config = tf.ConfigProto(log_device_placement=log_device_placement)

    if self.is_master and self.task.index > 0:
      raise StandardError("%s: Only one replica of master expected",
                          task_as_string(self.task)) 
開發者ID:wangheda,項目名稱:youtube-8m,代碼行數:21,代碼來源:train_ensemble.py

示例6: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GPUOptions [as 別名]
def __init__(self, cluster, task, train_dir, log_device_placement=True):
    """"Creates a Trainer.

    Args:
      cluster: A tf.train.ClusterSpec if the execution is distributed.
        None otherwise.
      task: A TaskSpec describing the job type and the task index.
    """

    self.cluster = cluster
    self.task = task
    self.is_master = (task.type == "master" and task.index == 0)
    self.train_dir = train_dir
    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.2)
    self.config = tf.ConfigProto(log_device_placement=log_device_placement,gpu_options=gpu_options)

    if self.is_master and self.task.index > 0:
      raise StandardError("%s: Only one replica of master expected",
                          task_as_string(self.task)) 
開發者ID:wangheda,項目名稱:youtube-8m,代碼行數:21,代碼來源:train_embedding.py

示例7: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GPUOptions [as 別名]
def __init__(self, net_factory, data_size, batch_size, model_path):
        graph = tf.Graph()
        with graph.as_default():
            self.image_op = tf.placeholder(tf.float32, shape=[batch_size, data_size, data_size, 3], name='input_image')
            #figure out landmark
            self.cls_prob, self.bbox_pred, self.landmark_pred = net_factory(self.image_op, training=False)
            self.sess = tf.Session(
                config=tf.ConfigProto(allow_soft_placement=True, gpu_options=tf.GPUOptions(allow_growth=True)))
            saver = tf.train.Saver()
            #check whether the dictionary is valid
            model_dict = '/'.join(model_path.split('/')[:-1])
            ckpt = tf.train.get_checkpoint_state(model_dict)
            print(model_path)
            readstate = ckpt and ckpt.model_checkpoint_path
            assert  readstate, "the params dictionary is not valid"
            print("restore models' param")
            saver.restore(self.sess, model_path)

        self.data_size = data_size
        self.batch_size = batch_size
    #rnet and onet minibatch(test) 
開發者ID:huseinzol05,項目名稱:Gather-Deployment,代碼行數:23,代碼來源:detector.py

示例8: train

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GPUOptions [as 別名]
def train(env_id, num_timesteps, seed, policy, hparams):

    ncpu = multiprocessing.cpu_count()
    #if sys.platform == 'darwin': ncpu //= 2
    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=hparams['gpu_fraction'])
    config = tf.ConfigProto(allow_soft_placement=True,
                            intra_op_parallelism_threads=ncpu,
                            inter_op_parallelism_threads=ncpu,
                            gpu_options=gpu_options)
    config.gpu_options.allow_growth = False #pylint: disable=E1101
    tf.Session(config=config).__enter__()

    video_log_dir = os.path.join(hparams['base_dir'], 'videos', hparams['experiment_name'])
    env = VecFrameStack(make_atari_env(env_id, 8, seed, video_log_dir=video_log_dir, write_attention_video='attention' in policy, nsteps=128), 4)
    policy = {'cnn' : CnnPolicy, 'lstm' : LstmPolicy, 'lnlstm' : LnLstmPolicy, 'cnn_attention': CnnAttentionPolicy}[policy]
    ppo2.learn(policy=policy, env=env, nsteps=128, nminibatches=4,
        lam=0.95, gamma=0.99, noptepochs=4, log_interval=1,
        ent_coef=.01,
        lr=lambda f : f * 2.5e-4,
        cliprange=lambda f : f * 0.1,
        total_timesteps=int(num_timesteps * 1.1),
        hparams=hparams) 
開發者ID:vik-goel,項目名稱:MOREL,代碼行數:24,代碼來源:run_atari.py

示例9: predict

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GPUOptions [as 別名]
def predict(images):
    gpu_options = tf.GPUOptions(allow_growth=True)
    with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess:
        x = tf.placeholder(
            shape=[None,  INPUT_SEQ, INPUT_H, INPUT_W, INPUT_D], dtype=tf.float32)
        y_ = tf.placeholder(shape=[None, OUTPUT_DIM], dtype=tf.float32)
        core_net = vqn_model(x)

        vars = tf.trainable_variables()
        lossL2 = tf.add_n([tf.nn.l2_loss(v) for v in vars]) * 1e-3

        core_net_loss = tflearn.objectives.mean_square(core_net, y_)
        # + lossL2
        core_train_op = tf.train.AdamOptimizer(
            learning_rate=LR_RATE).minimize(core_net_loss)
        core_net_acc = tf.reduce_mean(
            tf.abs(core_net - y_) / (tf.abs(core_net) + tf.abs(y_) / 2))
        core_net_mape = tf.subtract(1.0, tf.reduce_mean(
            tf.abs(core_net - y_) / tf.abs(y_)))
        train_len = X.shape[0]
        sess.run(tf.global_variables_initializer())
        saver = tf.train.Saver()
        saver.restore("model/nn_model_ep_300.ckpt")
        _test_y = sess.run(core_net, feed_dict={x: images})
        return _test_y 
開發者ID:thu-media,項目名稱:QARC,代碼行數:27,代碼來源:vqn-cnn.py

示例10: main

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GPUOptions [as 別名]
def main(_):
  gpu_options = tf.GPUOptions(
      per_process_gpu_memory_fraction=calc_gpu_fraction(FLAGS.gpu_fraction))

  with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess:
    config = get_config(FLAGS) or FLAGS

    if config.env_type == 'simple':
      env = SimpleGymEnvironment(config)
    else:
      env = GymEnvironment(config)

    if not tf.test.is_gpu_available() and FLAGS.use_gpu:
      raise Exception("use_gpu flag is true when no GPUs are available")

    if not FLAGS.use_gpu:
      config.cnn_format = 'NHWC'

    agent = Agent(config, env, sess)

    if FLAGS.is_train:
      agent.train()
    else:
      agent.play() 
開發者ID:devsisters,項目名稱:DQN-tensorflow,代碼行數:26,代碼來源:main.py

示例11: main

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GPUOptions [as 別名]
def main(_):
    if FLAGS.mode == 'prepare':
        print('Prepare files')
        create_wordVec(FLAGS)
        create_serial(FLAGS)
    else:
        tf.reset_default_graph()
        print('build model')
        gpu_options = tf.GPUOptions(visible_device_list=FLAGS.cuda, allow_growth=True)
        with tf.Graph().as_default():
            set_seed()
            sess = tf.Session(

                config=tf.ConfigProto(gpu_options=gpu_options, allow_soft_placement=True,
                                      intra_op_parallelism_threads=int(multiprocessing.cpu_count() / 2),
                                      inter_op_parallelism_threads=int(multiprocessing.cpu_count() / 2)))
            with sess.as_default():
                initializer = tf.contrib.layers.xavier_initializer()
                with tf.variable_scope('', initializer=initializer):
                    model = Baseline(FLAGS)
                sess.run(tf.global_variables_initializer())
                saver = tf.train.Saver(max_to_keep=None)
                model.run_model(sess, saver) 
開發者ID:shiningliang,項目名稱:CCKS2019-IPRE,代碼行數:25,代碼來源:baseline.py

示例12: setup_meta_ops

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GPUOptions [as 別名]
def setup_meta_ops(self):
		cfg = dict({
			'allow_soft_placement': False,
			'log_device_placement': False
		})

		utility = min(self.FLAGS.gpu, 1.)
		if utility > 0.0:
			self.say('GPU mode with {} usage'.format(utility))
			cfg['gpu_options'] = tf.GPUOptions(
				per_process_gpu_memory_fraction = utility)
			cfg['allow_soft_placement'] = True
		else: 
			self.say('Running entirely on CPU')
			cfg['device_count'] = {'GPU': 0}

		if self.FLAGS.train: self.build_train_op()
		
		if self.FLAGS.summary:
			self.summary_op = tf.summary.merge_all()
			self.writer = tf.summary.FileWriter(self.FLAGS.summary + 'train')
		
		self.sess = tf.Session(config = tf.ConfigProto(**cfg))
		self.sess.run(tf.global_variables_initializer())

		if not self.ntrain: return
		self.saver = tf.train.Saver(tf.global_variables(), 
			max_to_keep = self.FLAGS.keep)
		if self.FLAGS.load != 0: self.load_from_ckpt()
		
		if self.FLAGS.summary:
			self.writer.add_graph(self.sess.graph) 
開發者ID:AmeyaWagh,項目名稱:Traffic_sign_detection_YOLO,代碼行數:34,代碼來源:build.py

示例13: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GPUOptions [as 別名]
def __init__(self):
        self.graph = tf.Graph()
        with self.graph.as_default():
            gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.5)
            sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False))
            with sess.as_default():
                self.pnet, self.rnet, self.onet = FaceDet.create_mtcnn(sess, None) 
開發者ID:ppwwyyxx,項目名稱:Adversarial-Face-Attack,代碼行數:9,代碼來源:face_attack.py

示例14: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GPUOptions [as 別名]
def __init__(self, config, model, dataset):
        self.config = config
        self.model = model
        self.train_dir = config.train_dir
        log.info("self.train_dir = %s", self.train_dir)

        # --- input ops ---
        self.batch_size = config.batch_size

        self.dataset = dataset

        check_data_id(dataset, config.data_id)
        _, self.batch = create_input_ops(dataset, self.batch_size,
                                         data_id=config.data_id,
                                         is_training=False,
                                         shuffle=False)

        self.global_step = tf.contrib.framework.get_or_create_global_step(graph=None)
        self.step_op = tf.no_op(name='step_no_op')

        tf.set_random_seed(1234)

        session_config = tf.ConfigProto(
            allow_soft_placement=True,
            gpu_options=tf.GPUOptions(allow_growth=True),
            device_count={'GPU': 1},
        )
        self.session = tf.Session(config=session_config)

        # --- checkpoint and monitoring ---
        self.saver = tf.train.Saver(max_to_keep=100)

        self.checkpoint = config.checkpoint
        if self.checkpoint is None and self.train_dir:
            self.checkpoint = tf.train.latest_checkpoint(self.train_dir)
        if self.checkpoint is None:
            log.warn("No checkpoint is given. Just random initialization :-)")
            self.session.run(tf.global_variables_initializer())
        else:
            log.info("Checkpoint path : %s", self.checkpoint) 
開發者ID:clvrai,項目名稱:SSGAN-Tensorflow,代碼行數:42,代碼來源:evaler.py

示例15: create_session_config

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import GPUOptions [as 別名]
def create_session_config(log_device_placement=False,
                          enable_graph_rewriter=False,
                          gpu_mem_fraction=0.95,
                          use_tpu=False,
                          inter_op_parallelism_threads=0,
                          intra_op_parallelism_threads=0):
  """The TensorFlow Session config to use."""
  if use_tpu:
    graph_options = tf.GraphOptions()
  else:
    if enable_graph_rewriter:
      rewrite_options = rewriter_config_pb2.RewriterConfig()
      rewrite_options.layout_optimizer = rewriter_config_pb2.RewriterConfig.ON
      graph_options = tf.GraphOptions(rewrite_options=rewrite_options)
    else:
      graph_options = tf.GraphOptions(
          optimizer_options=tf.OptimizerOptions(
              opt_level=tf.OptimizerOptions.L1, do_function_inlining=False))

  gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=gpu_mem_fraction)

  config = tf.ConfigProto(
      allow_soft_placement=True,
      graph_options=graph_options,
      gpu_options=gpu_options,
      log_device_placement=log_device_placement,
      inter_op_parallelism_threads=inter_op_parallelism_threads,
      intra_op_parallelism_threads=intra_op_parallelism_threads)
  return config 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:31,代碼來源:trainer_lib.py


注:本文中的tensorflow.GPUOptions方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。