本文整理匯總了Python中tensorflow.FixedLenSequenceFeature方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.FixedLenSequenceFeature方法的具體用法?Python tensorflow.FixedLenSequenceFeature怎麽用?Python tensorflow.FixedLenSequenceFeature使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.FixedLenSequenceFeature方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _mapper
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import FixedLenSequenceFeature [as 別名]
def _mapper(example_proto):
features = {
'samples': tf.FixedLenSequenceFeature([1], tf.float32, allow_missing=True),
'label': tf.FixedLenSequenceFeature([], tf.string, allow_missing=True)
}
example = tf.parse_single_example(example_proto, features)
wav = example['samples'][:, 0]
wav = wav[:16384]
wav_len = tf.shape(wav)[0]
wav = tf.pad(wav, [[0, 16384 - wav_len]])
label = tf.reduce_join(example['label'], 0)
return wav, label
示例2: _read_single_sequence_example
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import FixedLenSequenceFeature [as 別名]
def _read_single_sequence_example(file_list, tokens_shape=None):
"""Reads and parses SequenceExamples from TFRecord-encoded file_list."""
tf.logging.info('Constructing TFRecordReader from files: %s', file_list)
file_queue = tf.train.string_input_producer(file_list)
reader = tf.TFRecordReader()
seq_key, serialized_record = reader.read(file_queue)
ctx, sequence = tf.parse_single_sequence_example(
serialized_record,
sequence_features={
data_utils.SequenceWrapper.F_TOKEN_ID:
tf.FixedLenSequenceFeature(tokens_shape or [], dtype=tf.int64),
data_utils.SequenceWrapper.F_LABEL:
tf.FixedLenSequenceFeature([], dtype=tf.int64),
data_utils.SequenceWrapper.F_WEIGHT:
tf.FixedLenSequenceFeature([], dtype=tf.float32),
})
return seq_key, ctx, sequence
示例3: example_reading_spec
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import FixedLenSequenceFeature [as 別名]
def example_reading_spec(self):
data_fields, data_items_to_decoders = (
super(ImageVqav2Tokens10kLabels3k, self).example_reading_spec())
data_fields["image/image_id"] = tf.FixedLenFeature((), tf.int64)
data_fields["image/question_id"] = tf.FixedLenFeature((), tf.int64)
data_fields["image/question"] = tf.FixedLenSequenceFeature(
(), tf.int64, allow_missing=True)
data_fields["image/answer"] = tf.FixedLenSequenceFeature(
(), tf.int64, allow_missing=True)
data_items_to_decoders[
"question"] = tf.contrib.slim.tfexample_decoder.Tensor(
"image/question")
data_items_to_decoders[
"targets"] = tf.contrib.slim.tfexample_decoder.Tensor(
"image/answer")
return data_fields, data_items_to_decoders
示例4: _parse_record
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import FixedLenSequenceFeature [as 別名]
def _parse_record(example_proto):
context_features = {
"length": tf.FixedLenFeature([], dtype=tf.int64)
}
sequence_features = {
"tokens": tf.FixedLenSequenceFeature([], dtype=tf.int64),
"labels": tf.FixedLenSequenceFeature([], dtype=tf.int64)
}
context_parsed, sequence_parsed = tf.parse_single_sequence_example(serialized=example_proto,
context_features=context_features, sequence_features=sequence_features)
return context_parsed['length'], sequence_parsed['tokens'], sequence_parsed['labels']
# Read training data from TFRecord file, shuffle, loop over data infinitely and
# pad to the longest sentence
示例5: parse_sequence_example
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import FixedLenSequenceFeature [as 別名]
def parse_sequence_example(serialized_example, num_views):
"""Parses a serialized sequence example into views, sequence length data."""
context_features = {
'task': tf.FixedLenFeature(shape=[], dtype=tf.string),
'len': tf.FixedLenFeature(shape=[], dtype=tf.int64)
}
view_names = ['view%d' % i for i in range(num_views)]
fixed_features = [
tf.FixedLenSequenceFeature(
shape=[], dtype=tf.string) for _ in range(len(view_names))]
sequence_features = dict(zip(view_names, fixed_features))
context_parse, sequence_parse = tf.parse_single_sequence_example(
serialized=serialized_example,
context_features=context_features,
sequence_features=sequence_features)
views = tf.stack([sequence_parse[v] for v in view_names])
lens = [sequence_parse[v].get_shape().as_list()[0] for v in view_names]
assert len(set(lens)) == 1
seq_len = tf.shape(sequence_parse[v])[0]
return context_parse, views, seq_len
示例6: deserialize_fasta_sequence
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import FixedLenSequenceFeature [as 別名]
def deserialize_fasta_sequence(example):
context = {
'protein_length': tf.FixedLenFeature([1], tf.int64),
'id': tf.FixedLenFeature([], tf.string)
}
features = {
'primary': tf.FixedLenSequenceFeature([1], tf.int64),
}
context, features = tf.parse_single_sequence_example(
example,
context_features=context,
sequence_features=features
)
return {'id': context['id'],
'primary': tf.to_int32(features['primary'][:, 0]),
'protein_length': tf.to_int32(context['protein_length'][0])}
示例7: parse_sequence_example
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import FixedLenSequenceFeature [as 別名]
def parse_sequence_example(serialized_example, num_views):
"""Parses a serialized sequence example into views, sequence length data."""
context_features = {
'task': tf.FixedLenFeature(shape=[], dtype=tf.string),
'len': tf.FixedLenFeature(shape=[], dtype=tf.int64)
}
view_names = ['view%d' % i for i in range(num_views)]
fixed_features = [
tf.FixedLenSequenceFeature(
shape=[], dtype=tf.string) for _ in range(len(view_names))]
sequence_features = dict(zip(view_names, fixed_features))
context_parse, sequence_parse = tf.parse_single_sequence_example(
serialized=serialized_example,
context_features=context_features,
sequence_features=sequence_features)
views = tf.stack([sequence_parse[v] for v in view_names])
lens = [sequence_parse[v].get_shape().as_list()[0] for v in view_names]
assert len(set(lens)) == 1
seq_len = tf.shape(sequence_parse[view_names[-1]])[0]
return context_parse, views, seq_len
示例8: testSequenceExampleListWithInconsistentDataFails
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import FixedLenSequenceFeature [as 別名]
def testSequenceExampleListWithInconsistentDataFails(self):
original = sequence_example(feature_lists=feature_lists({
"a": feature_list([
int64_feature([-1, 0]), float_feature([2, 3])
])
}))
serialized = original.SerializeToString()
self._test(
{
"example_name": "in1",
"serialized": tf.convert_to_tensor(serialized),
"sequence_features": {"a": tf.FixedLenSequenceFeature(
(2,), tf.int64)}
},
expected_err=(tf.OpError, "Feature list: a, Index: 1."
" Data types don't match. Expected type: int64"))
示例9: testSequenceExampleListWithWrongDataTypeFails
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import FixedLenSequenceFeature [as 別名]
def testSequenceExampleListWithWrongDataTypeFails(self):
original = sequence_example(feature_lists=feature_lists({
"a": feature_list([
float_feature([2, 3])
])
}))
serialized = original.SerializeToString()
self._test(
{
"example_name": "in1",
"serialized": tf.convert_to_tensor(serialized),
"sequence_features": {"a": tf.FixedLenSequenceFeature(
(2,), tf.int64)}
},
expected_err=(tf.OpError,
"Feature list: a, Index: 0. Data types don't match."
" Expected type: int64"))
示例10: testSequenceExampleListWithWrongShapeFails
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import FixedLenSequenceFeature [as 別名]
def testSequenceExampleListWithWrongShapeFails(self):
original = sequence_example(feature_lists=feature_lists({
"a": feature_list([
int64_feature([2, 3]), int64_feature([2, 3, 4])
]),
}))
serialized = original.SerializeToString()
self._test(
{
"example_name": "in1",
"serialized": tf.convert_to_tensor(serialized),
"sequence_features": {"a": tf.FixedLenSequenceFeature(
(2,), tf.int64)}
},
expected_err=(tf.OpError, r"Name: in1, Key: a, Index: 1."
r" Number of int64 values != expected."
r" values size: 3 but output shape: \[2\]"))
示例11: testSequenceExampleWithMissingFeatureListFails
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import FixedLenSequenceFeature [as 別名]
def testSequenceExampleWithMissingFeatureListFails(self):
original = sequence_example(feature_lists=feature_lists({}))
# Test fails because we didn't add:
# feature_list_dense_defaults = {"a": None}
self._test(
{
"example_name": "in1",
"serialized": tf.convert_to_tensor(original.SerializeToString()),
"sequence_features": {"a": tf.FixedLenSequenceFeature(
(2,), tf.int64)}
},
expected_err=(
tf.OpError,
"Name: in1, Feature list 'a' is required but could not be found."
" Did you mean to include it in"
" feature_list_dense_missing_assumed_empty or"
" feature_list_dense_defaults?"))
示例12: create_tensorrec_dataset_from_tfrecord
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import FixedLenSequenceFeature [as 別名]
def create_tensorrec_dataset_from_tfrecord(tfrecord_path):
"""
Loads a TFRecord file and creates a Dataset with the contents.
:param tfrecord_path: str
:return: tf.data.Dataset
"""
def parse_tensorrec_tfrecord(example_proto):
features = {
'row_index': tf.FixedLenSequenceFeature((), tf.int64, allow_missing=True),
'col_index': tf.FixedLenSequenceFeature((), tf.int64, allow_missing=True),
'values': tf.FixedLenSequenceFeature((), tf.float32, allow_missing=True),
'd0': tf.FixedLenFeature((), tf.int64),
'd1': tf.FixedLenFeature((), tf.int64),
}
parsed_features = tf.parse_single_example(example_proto, features)
return (parsed_features['row_index'], parsed_features['col_index'], parsed_features['values'],
parsed_features['d0'], parsed_features['d1'])
dataset = tf.data.TFRecordDataset(tfrecord_path).map(parse_tensorrec_tfrecord)
return dataset
示例13: _read_sequence_example
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import FixedLenSequenceFeature [as 別名]
def _read_sequence_example(filename_queue,
n_labels=50, n_samples=59049, n_segments=10):
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
context, sequence = tf.parse_single_sequence_example(
serialized_example,
context_features={
'raw_labels': tf.FixedLenFeature([], dtype=tf.string)
},
sequence_features={
'raw_segments': tf.FixedLenSequenceFeature([], dtype=tf.string)
})
segments = tf.decode_raw(sequence['raw_segments'], tf.float32)
segments.set_shape([n_segments, n_samples])
labels = tf.decode_raw(context['raw_labels'], tf.uint8)
labels.set_shape([n_labels])
labels = tf.cast(labels, tf.float32)
return segments, labels
示例14: parse_fn
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import FixedLenSequenceFeature [as 別名]
def parse_fn(serialized_example):
"""Parse a serialized example."""
# user_id is not currently used.
context_features = {
'user_id': tf.FixedLenFeature([], dtype=tf.int64)
}
sequence_features = {
'movie_ids': tf.FixedLenSequenceFeature([], dtype=tf.int64)
}
parsed_feature, parsed_sequence_feature = tf.parse_single_sequence_example(
serialized=serialized_example,
context_features=context_features,
sequence_features=sequence_features
)
movie_ids = parsed_sequence_feature['movie_ids']
return movie_ids
示例15: read_dataset
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import FixedLenSequenceFeature [as 別名]
def read_dataset(filename, num_channels=39):
"""Read data from tfrecord file."""
def parse_fn(example_proto):
"""Parse function for reading single sequence example."""
sequence_features = {
'inputs': tf.FixedLenSequenceFeature(shape=[num_channels], dtype=tf.float32),
'labels': tf.FixedLenSequenceFeature(shape=[], dtype=tf.string)
}
context, sequence = tf.parse_single_sequence_example(
serialized=example_proto,
sequence_features=sequence_features
)
return sequence['inputs'], sequence['labels']
dataset = tf.data.TFRecordDataset(filename)
dataset = dataset.map(parse_fn)
return dataset