本文整理匯總了Python中tensorflow.FixedLenFeature方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.FixedLenFeature方法的具體用法?Python tensorflow.FixedLenFeature怎麽用?Python tensorflow.FixedLenFeature使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.FixedLenFeature方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: read_from_tfrecord
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import FixedLenFeature [as 別名]
def read_from_tfrecord(filenames):
tfrecord_file_queue = tf.train.string_input_producer(filenames, name='queue')
reader = tf.TFRecordReader()
_, tfrecord_serialized = reader.read(tfrecord_file_queue)
tfrecord_features = tf.parse_single_example(tfrecord_serialized, features={
'label': tf.FixedLenFeature([],tf.int64),
'shape': tf.FixedLenFeature([],tf.string),
'image': tf.FixedLenFeature([],tf.string),
}, name='features')
image = tf.decode_raw(tfrecord_features['image'], tf.uint8)
shape = tf.decode_raw(tfrecord_features['shape'], tf.int32)
image = tf.reshape(image, shape)
label = tfrecord_features['label']
return label, shape, image
示例2: read_and_decode
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import FixedLenFeature [as 別名]
def read_and_decode(filename_queue):
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(
serialized_example,
# Defaults are not specified since both keys are required.
features={
'image_raw': tf.FixedLenFeature([], tf.string),
})
image = tf.decode_raw(features['image_raw'], tf.uint8)
image = tf.reshape(image, [227, 227, 6])
# Convert from [0, 255] -> [-0.5, 0.5] floats.
image = tf.cast(image, tf.float32) * (1. / 255) - 0.5
return tf.split(image, 2, 2) # 3rd dimension two parts
示例3: read_and_decode_aug
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import FixedLenFeature [as 別名]
def read_and_decode_aug(filename_queue):
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(
serialized_example,
# Defaults are not specified since both keys are required.
features={
'image_raw': tf.FixedLenFeature([], tf.string),
})
image = tf.decode_raw(features['image_raw'], tf.uint8)
image = tf.image.random_flip_left_right(tf.reshape(image, [227, 227, 6]))
# Convert from [0, 255] -> [-0.5, 0.5] floats.
image = tf.cast(image, tf.float32) * (1. / 255) - 0.5
image = tf.image.random_brightness(image, 0.01)
image = tf.image.random_contrast(image, 0.95, 1.05)
return tf.split(image, 2, 2) # 3rd dimension two parts
示例4: example_reading_spec
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import FixedLenFeature [as 別名]
def example_reading_spec(self):
extra_data_fields, extra_data_items_to_decoders = self.extra_reading_spec
data_fields = {
"image/encoded": tf.FixedLenFeature((), tf.string),
"image/format": tf.FixedLenFeature((), tf.string),
}
data_fields.update(extra_data_fields)
data_items_to_decoders = {
"frame":
tf.contrib.slim.tfexample_decoder.Image(
image_key="image/encoded",
format_key="image/format",
shape=[self.frame_height, self.frame_width, self.num_channels],
channels=self.num_channels),
}
data_items_to_decoders.update(extra_data_items_to_decoders)
return data_fields, data_items_to_decoders
示例5: extra_reading_spec
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import FixedLenFeature [as 別名]
def extra_reading_spec(self):
"""Additional data fields to store on disk and their decoders."""
# TODO(piotrmilos): shouldn't done be included here?
data_fields = {
"frame_number": tf.FixedLenFeature([1], tf.int64),
"action": tf.FixedLenFeature([1], tf.int64),
"reward": tf.FixedLenFeature([1], tf.int64)
}
decoders = {
"frame_number":
tf.contrib.slim.tfexample_decoder.Tensor(tensor_key="frame_number"),
"action":
tf.contrib.slim.tfexample_decoder.Tensor(tensor_key="action"),
"reward":
tf.contrib.slim.tfexample_decoder.Tensor(tensor_key="reward"),
}
return data_fields, decoders
示例6: parse_fn
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import FixedLenFeature [as 別名]
def parse_fn(self, serialized_example):
features={
'image/id_name': tf.FixedLenFeature([], tf.string),
'image/height' : tf.FixedLenFeature([], tf.int64),
'image/width' : tf.FixedLenFeature([], tf.int64),
'image/encoded': tf.FixedLenFeature([], tf.string),
}
for name in self.feature_list:
features[name] = tf.FixedLenFeature([], tf.int64)
example = tf.parse_single_example(serialized_example, features=features)
image = tf.decode_raw(example['image/encoded'], tf.uint8)
raw_height = tf.cast(example['image/height'], tf.int32)
raw_width = tf.cast(example['image/width'], tf.int32)
image = tf.reshape(image, [raw_height, raw_width, 3])
image = tf.image.resize_images(image, size=[self.height, self.width])
# from IPython import embed; embed(); exit()
feature_val_list = [tf.cast(example[name], tf.float32) for name in self.feature_list]
return image, feature_val_list
示例7: parse_fun
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import FixedLenFeature [as 別名]
def parse_fun(serialized_example):
""" Data parsing function.
"""
features = tf.parse_single_example(serialized_example,
features={'image': tf.FixedLenFeature([], tf.string),
'label': tf.FixedLenFeature([], tf.int64),
'height': tf.FixedLenFeature([], tf.int64),
'width': tf.FixedLenFeature([], tf.int64),
'depth': tf.FixedLenFeature([], tf.int64)})
height = tf.cast(features['height'], tf.int32)
width = tf.cast(features['width'], tf.int32)
depth = tf.cast(features['depth'], tf.int32)
image = tf.decode_raw(features['image'], tf.float32)
image = tf.reshape(image, shape=[height * width * depth])
image.set_shape([28 * 28 * 1])
image = tf.cast(image, tf.float32) * (1. / 255)
label = tf.cast(features['label'], tf.int32)
features = {'images': image, 'labels': label}
return(features)
示例8: _extract_features_batch
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import FixedLenFeature [as 別名]
def _extract_features_batch(self, serialized_batch):
features = tf.parse_example(
serialized_batch,
features={'images': tf.FixedLenFeature([], tf.string),
'imagepaths': tf.FixedLenFeature([], tf.string),
'labels': tf.VarLenFeature(tf.int64),
})
bs = features['images'].shape[0]
images = tf.decode_raw(features['images'], tf.uint8)
w, h = tuple(CFG.ARCH.INPUT_SIZE)
images = tf.cast(x=images, dtype=tf.float32)
#images = tf.subtract(tf.divide(images, 128.0), 1.0)
images = tf.reshape(images, [bs, h, -1, CFG.ARCH.INPUT_CHANNELS])
labels = features['labels']
labels = tf.cast(labels, tf.int32)
imagepaths = features['imagepaths']
return images, labels, imagepaths
開發者ID:Mingtzge,項目名稱:2019-CCF-BDCI-OCR-MCZJ-OCR-IdentificationIDElement,代碼行數:23,代碼來源:read_tfrecord.py
示例9: parse_color_data
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import FixedLenFeature [as 別名]
def parse_color_data(example_proto):
features = {"img_raw": tf.FixedLenFeature([], tf.string),
"label": tf.FixedLenFeature([], tf.string),
"width": tf.FixedLenFeature([], tf.int64),
"height": tf.FixedLenFeature([], tf.int64)}
parsed_features = tf.parse_single_example(example_proto, features)
img = parsed_features["img_raw"]
img = tf.decode_raw(img, tf.uint8)
width = parsed_features["width"]
height = parsed_features["height"]
img = tf.reshape(img, [height, width, 3])
img = tf.cast(img, tf.float32) * (1. / 255.) - 0.5
label = parsed_features["label"]
label = tf.decode_raw(label, tf.float32)
return img, label
示例10: _read_raw
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import FixedLenFeature [as 別名]
def _read_raw(self):
"""Read raw data from TFRecord.
Returns:
:return: data list [input_raw, label_raw].
"""
self._reader = tf.TFRecordReader()
_, serialized_example = self._reader.read(self._queue)
features = tf.parse_single_example(serialized_example,
features={
'name': tf.FixedLenFeature([], tf.string),
'block': tf.FixedLenFeature([], tf.string)
})
input_raw, label_raw = decode_block(features['block'], tensor_size=self._raw_size)
if self._with_key:
return input_raw, label_raw, features['name']
return input_raw, label_raw
示例11: read_and_decode
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import FixedLenFeature [as 別名]
def read_and_decode(filename_queue):
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(
serialized_example,
features={
'image_raw': tf.FixedLenFeature([], tf.string),
'label': tf.FixedLenFeature([], tf.int64),
})
image = tf.decode_raw(features['image_raw'], tf.uint8)
image.set_shape([784])
image = tf.cast(image, tf.float32) * (1. / 255)
label = tf.cast(features['label'], tf.int32)
return image, label
示例12: load_patch_coordinates_from_filename_queue
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import FixedLenFeature [as 別名]
def load_patch_coordinates_from_filename_queue(filename_queue):
"""Loads coordinates and volume names from filename queue.
Args:
filename_queue: Tensorflow queue created from create_filename_queue()
Returns:
Tuple of coordinates (shape `[1, 3]`) and volume name (shape `[1]`) tensors.
"""
record_options = tf.python_io.TFRecordOptions(
tf.python_io.TFRecordCompressionType.GZIP)
keys, protos = tf.TFRecordReader(options=record_options).read(filename_queue)
examples = tf.parse_single_example(protos, features=dict(
center=tf.FixedLenFeature(shape=[1, 3], dtype=tf.int64),
label_volume_name=tf.FixedLenFeature(shape=[1], dtype=tf.string),
))
coord = examples['center']
volname = examples['label_volume_name']
return coord, volname
示例13: prepare_serialized_examples
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import FixedLenFeature [as 別名]
def prepare_serialized_examples(self, serialized_examples):
# set the mapping from the fields to data types in the proto
num_features = len(self.feature_names)
assert num_features > 0, "self.feature_names is empty!"
assert len(self.feature_names) == len(self.feature_sizes), \
"length of feature_names (={}) != length of feature_sizes (={})".format( \
len(self.feature_names), len(self.feature_sizes))
feature_map = {"video_id": tf.FixedLenFeature([], tf.string),
"labels": tf.VarLenFeature(tf.int64)}
for feature_index in range(num_features):
feature_map[self.feature_names[feature_index]] = tf.FixedLenFeature(
[self.feature_sizes[feature_index]], tf.float32)
features = tf.parse_example(serialized_examples, features=feature_map)
labels = tf.sparse_to_indicator(features["labels"], self.num_classes)
labels.set_shape([None, self.num_classes])
concatenated_features = tf.concat([
features[feature_name] for feature_name in self.feature_names], 1)
return features["video_id"], concatenated_features, labels, tf.ones([tf.shape(serialized_examples)[0]])
示例14: parse_tfrecord_tf
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import FixedLenFeature [as 別名]
def parse_tfrecord_tf(record):
features = tf.parse_single_example(record, features={
'shape': tf.FixedLenFeature([3], tf.int64),
'data': tf.FixedLenFeature([], tf.string)})
data = tf.decode_raw(features['data'], tf.uint8)
return tf.reshape(data, features['shape'])
示例15: _count_matrix_input
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import FixedLenFeature [as 別名]
def _count_matrix_input(self, filenames, submatrix_rows, submatrix_cols):
"""Creates ops that read submatrix shards from disk."""
random.shuffle(filenames)
filename_queue = tf.train.string_input_producer(filenames)
reader = tf.WholeFileReader()
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(
serialized_example,
features={
'global_row': tf.FixedLenFeature([submatrix_rows], dtype=tf.int64),
'global_col': tf.FixedLenFeature([submatrix_cols], dtype=tf.int64),
'sparse_local_row': tf.VarLenFeature(dtype=tf.int64),
'sparse_local_col': tf.VarLenFeature(dtype=tf.int64),
'sparse_value': tf.VarLenFeature(dtype=tf.float32)
})
global_row = features['global_row']
global_col = features['global_col']
sparse_local_row = features['sparse_local_row'].values
sparse_local_col = features['sparse_local_col'].values
sparse_count = features['sparse_value'].values
sparse_indices = tf.concat(
axis=1, values=[tf.expand_dims(sparse_local_row, 1),
tf.expand_dims(sparse_local_col, 1)])
count = tf.sparse_to_dense(sparse_indices, [submatrix_rows, submatrix_cols],
sparse_count)
return global_row, global_col, count