本文整理匯總了Python中tensorflow.FIFOQueue方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.FIFOQueue方法的具體用法?Python tensorflow.FIFOQueue怎麽用?Python tensorflow.FIFOQueue使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.FIFOQueue方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: testSimple
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import FIFOQueue [as 別名]
def testSimple(self):
labels = [9, 3, 0]
records = [self._record(labels[0], 0, 128, 255),
self._record(labels[1], 255, 0, 1),
self._record(labels[2], 254, 255, 0)]
contents = b"".join([record for record, _ in records])
expected = [expected for _, expected in records]
filename = os.path.join(self.get_temp_dir(), "cifar")
open(filename, "wb").write(contents)
with self.test_session() as sess:
q = tf.FIFOQueue(99, [tf.string], shapes=())
q.enqueue([filename]).run()
q.close().run()
result = cifar10_input.read_cifar10(q)
for i in range(3):
key, label, uint8image = sess.run([
result.key, result.label, result.uint8image])
self.assertEqual("%s:%d" % (filename, i), tf.compat.as_text(key))
self.assertEqual(labels[i], label)
self.assertAllEqual(expected[i], uint8image)
with self.assertRaises(tf.errors.OutOfRangeError):
sess.run([result.key, result.uint8image])
示例2: enqueue
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import FIFOQueue [as 別名]
def enqueue(sess):
""" Iterates over our data puts small junks into our queue."""
under = 0
max = len(raw_data)
while True:
print("starting to write into queue")
upper = under + 20
print("try to enqueue ", under, " to ", upper)
if upper <= max:
curr_data = raw_data[under:upper]
curr_target = raw_target[under:upper]
under = upper
else:
rest = upper - max
curr_data = np.concatenate((raw_data[under:max], raw_data[0:rest]))
curr_target = np.concatenate((raw_target[under:max], raw_target[0:rest]))
under = rest
sess.run(enqueue_op, feed_dict={queue_input_data: curr_data,
queue_input_target: curr_target})
print("added to the queue")
print("finished enqueueing")
# start the threads for our FIFOQueue and batch
示例3: create_tensor
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import FIFOQueue [as 別名]
def create_tensor(self, in_layers=None, **kwargs):
# TODO(rbharath): Not sure if this layer can be called with __call__
# meaningfully, so not going to support that functionality for now.
if in_layers is None:
in_layers = self.in_layers
in_layers = convert_to_layers(in_layers)
self.dtypes = [x.out_tensor.dtype for x in in_layers]
self.queue = tf.FIFOQueue(self.capacity, self.dtypes, names=self.names)
feed_dict = {x.name: x.out_tensor for x in in_layers}
self.out_tensor = self.queue.enqueue(feed_dict)
self.close_op = self.queue.close()
self.out_tensors = self.queue.dequeue()
self._non_pickle_fields += ['queue', 'out_tensors', 'close_op']
# def none_tensors(self):
# queue, out_tensors, out_tensor, close_op = self.queue, self.out_tensor, self.out_tensor, self.close_op
# self.queue, self.out_tensor, self.out_tensors, self.close_op = None, None, None, None
# return queue, out_tensors, out_tensor, close_op
# def set_tensors(self, tensors):
# self.queue, self.out_tensor, self.out_tensors, self.close_op = tensors
示例4: manual_eval_ops
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import FIFOQueue [as 別名]
def manual_eval_ops(self, device='/cpu:0'):
""" This is the baseline random model, this takes all the targets,
randomly assign values to it and then report the result.
:param device:
:return:
"""
with tf.name_scope("namual_evaluation"):
with tf.device('/cpu:0'):
# head rel pair to evaluate
ph_head_rel = tf.placeholder(tf.string, [1, 2], name='ph_head_rel')
# tail targets to evaluate
ph_eval_targets = tf.placeholder(tf.string, [1, None], name='ph_eval_targets')
# indices of true tail targets in ph_eval_targets. Mask these when calculating filtered mean rank
ph_true_target_idx = tf.placeholder(tf.int32, [None], name='ph_true_target_idx')
# indices of true targets in the evaluation set, we will return the ranks of these targets
ph_test_target_idx = tf.placeholder(tf.int32, [None], name='ph_test_target_idx')
# We put random numbers into the pred_scores_queue
pred_scores_queue = tf.FIFOQueue(1000000, dtypes=tf.float32, shapes=[[1]], name='pred_scorse_queue')
示例5: __init__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import FIFOQueue [as 別名]
def __init__(self, dataset, num_threads, queue_size, batch_size):
self._dataset = dataset
self._num_threads = num_threads
self._queue_size = queue_size
self._batch_size = batch_size
datatypes = 2*['float32']
shapes = 2*[self._dataset.shape]
batch_shape = [None]+list(self._dataset.shape)
self._placeholders = 2*[
tf.placeholder(dtype=tf.float32, shape=batch_shape),
tf.placeholder(dtype=tf.float32, shape=batch_shape)
]
self._queue = tf.FIFOQueue(self._queue_size, datatypes, shapes=shapes)
self.x, self.y = self._queue.dequeue_up_to(self._batch_size)
self.enqueue_op = self._queue.enqueue_many(self._placeholders)
self._coordinator = tf.train.Coordinator()
self._threads = []
示例6: __init__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import FIFOQueue [as 別名]
def __init__(self, input_size, batch_size, data_generator_creator, max_steps=None):
super().__init__(input_size)
self.batch_size = batch_size
self.data_generator_creator = data_generator_creator
self.steps_left = max_steps
with tf.device("/cpu:0"):
# Define input and label placeholders
# inputs is of dimension [batch_size, max_time, input_size]
self.inputs = tf.placeholder(tf.float32, [batch_size, None, input_size], name='inputs')
self.sequence_lengths = tf.placeholder(tf.int32, [batch_size], name='sequence_lengths')
self.labels = tf.sparse_placeholder(tf.int32, name='labels')
# Queue for inputs and labels
self.queue = tf.FIFOQueue(dtypes=[tf.float32, tf.int32, tf.string],
capacity=100)
# queues do not support sparse tensors yet, we need to serialize...
serialized_labels = tf.serialize_many_sparse(self.labels)
self.enqueue_op = self.queue.enqueue([self.inputs,
self.sequence_lengths,
serialized_labels])
示例7: __init__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import FIFOQueue [as 別名]
def __init__(self, path, batch_size=16, input_size=227,
scale_factor=1.0, num_threads=10):
self._path = path
self._list_files = glob.glob(os.path.join(path, "**/*.avi"))
self._batch_size = batch_size
self._scale_factor = scale_factor
self._image_size = input_size
self._label_size = int(input_size * self._scale_factor)
self._num_threads = num_threads
self._coord = tf.train.Coordinator()
self._image_shape = [batch_size, self._image_size, self._image_size, 3]
self._label_shape = [batch_size, self._label_size, self._label_size, 1]
p_x = tf.placeholder(tf.float32, self._image_shape, name='x')
p_y = tf.placeholder(tf.float32, self._label_shape, name='y')
inputs = [p_x, p_y]
self._queue = tf.FIFOQueue(400,
[i.dtype for i in inputs], [i.get_shape() for i in inputs])
self._inputs = inputs
self._enqueue_op = self._queue.enqueue(inputs)
self._queue_close_op = self._queue.close(cancel_pending_enqueues=True)
self._threads = []
示例8: __init__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import FIFOQueue [as 別名]
def __init__(self, files, batch_size=16, input_size=227,
scale_factor=1.0, num_threads=10):
self._list_files = files
self._batch_size = batch_size
self._scale_factor = scale_factor
self._image_size = input_size
self._label_size = int(input_size * self._scale_factor)
self._num_threads = num_threads
self._coord = tf.train.Coordinator()
self._image_shape = [batch_size, self._image_size, self._image_size, 3]
self._label_shape = [batch_size, self._label_size, self._label_size, 2]
p_x = tf.placeholder(tf.float32, self._image_shape, name='x')
p_y = tf.placeholder(tf.float32, self._label_shape, name='y')
inputs = [p_x, p_y]
self._queue = tf.FIFOQueue(400,
[i.dtype for i in inputs], [i.get_shape() for i in inputs])
self._inputs = inputs
self._enqueue_op = self._queue.enqueue(inputs)
self._queue_close_op = self._queue.close(cancel_pending_enqueues=True)
self._threads = []
示例9: __init__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import FIFOQueue [as 別名]
def __init__(self, path, root_path='', batch_size=16, input_size=227, num_threads=10):
self._path = path
self._root_path = root_path
with open(path) as f:
self._list_files = [x.rstrip('\n') for x in f.readlines()]
print('list_files', len(self._list_files))
self._batch_size = batch_size
self._input_size = input_size
self._num_threads = num_threads
self._coord = tf.train.Coordinator()
self._base_shape = [batch_size, input_size, input_size]
self._image_shape = self._base_shape + [3]
self._label_shape = self._base_shape + [1]
p_x = tf.placeholder(tf.float32, self._image_shape, name='x')
p_y = tf.placeholder(tf.float32, self._label_shape, name='y')
inputs = [p_x, p_y]
self._queue = tf.FIFOQueue(400,
[i.dtype for i in inputs], [i.get_shape() for i in inputs])
self._inputs = inputs
self._enqueue_op = self._queue.enqueue(inputs)
self._queue_close_op = self._queue.close(cancel_pending_enqueues=True)
self._threads = []
示例10: testMultipleEpochs
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import FIFOQueue [as 別名]
def testMultipleEpochs(self):
with self.test_session() as sess:
reader = tf.IdentityReader("test_reader")
queue = tf.FIFOQueue(99, [tf.string], shapes=())
enqueue = queue.enqueue_many([["DD", "EE"]])
key, value = reader.read(queue)
enqueue.run()
self._ExpectRead(sess, key, value, b"DD")
self._ExpectRead(sess, key, value, b"EE")
enqueue.run()
self._ExpectRead(sess, key, value, b"DD")
self._ExpectRead(sess, key, value, b"EE")
enqueue.run()
self._ExpectRead(sess, key, value, b"DD")
self._ExpectRead(sess, key, value, b"EE")
queue.close().run()
with self.assertRaisesOpError("is closed and has insufficient elements "
"\\(requested 1, current size 0\\)"):
sess.run([key, value])
示例11: _testOneEpoch
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import FIFOQueue [as 別名]
def _testOneEpoch(self, files):
with self.test_session() as sess:
reader = tf.TextLineReader(name="test_reader")
queue = tf.FIFOQueue(99, [tf.string], shapes=())
key, value = reader.read(queue)
queue.enqueue_many([files]).run()
queue.close().run()
for i in range(self._num_files):
for j in range(self._num_lines):
k, v = sess.run([key, value])
self.assertAllEqual("%s:%d" % (files[i], j + 1), tf.compat.as_text(k))
self.assertAllEqual(self._LineText(i, j), v)
with self.assertRaisesOpError("is closed and has insufficient elements "
"\\(requested 1, current size 0\\)"):
k, v = sess.run([key, value])
示例12: testSkipHeaderLines
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import FIFOQueue [as 別名]
def testSkipHeaderLines(self):
files = self._CreateFiles()
with self.test_session() as sess:
reader = tf.TextLineReader(skip_header_lines=1, name="test_reader")
queue = tf.FIFOQueue(99, [tf.string], shapes=())
key, value = reader.read(queue)
queue.enqueue_many([files]).run()
queue.close().run()
for i in range(self._num_files):
for j in range(self._num_lines - 1):
k, v = sess.run([key, value])
self.assertAllEqual("%s:%d" % (files[i], j + 2), tf.compat.as_text(k))
self.assertAllEqual(self._LineText(i, j + 1), v)
with self.assertRaisesOpError("is closed and has insufficient elements "
"\\(requested 1, current size 0\\)"):
k, v = sess.run([key, value])
示例13: testOneEpoch
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import FIFOQueue [as 別名]
def testOneEpoch(self):
files = self._CreateFiles()
with self.test_session() as sess:
reader = tf.FixedLengthRecordReader(
header_bytes=self._header_bytes,
record_bytes=self._record_bytes,
footer_bytes=self._footer_bytes,
name="test_reader")
queue = tf.FIFOQueue(99, [tf.string], shapes=())
key, value = reader.read(queue)
queue.enqueue_many([files]).run()
queue.close().run()
for i in range(self._num_files):
for j in range(self._num_records):
k, v = sess.run([key, value])
self.assertAllEqual("%s:%d" % (files[i], j), tf.compat.as_text(k))
self.assertAllEqual(self._Record(i, j), v)
with self.assertRaisesOpError("is closed and has insufficient elements "
"\\(requested 1, current size 0\\)"):
k, v = sess.run([key, value])
示例14: testWhileQueue_1
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import FIFOQueue [as 別名]
def testWhileQueue_1(self):
with self.test_session():
q = tf.FIFOQueue(-1, tf.int32)
i = tf.constant(0)
def c(i):
return tf.less(i, 10)
def b(i):
ni = tf.add(i, 1)
ni = control_flow_ops.with_dependencies([q.enqueue((i,))], ni)
return ni
r = tf.while_loop(c, b, [i], parallel_iterations=1)
self.assertEqual([10], r.eval())
for i in xrange(10):
self.assertEqual([i], q.dequeue().eval())
示例15: testConstructorWithShapes
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import FIFOQueue [as 別名]
def testConstructorWithShapes(self):
with tf.Graph().as_default():
q = tf.FIFOQueue(5, (tf.int32, tf.float32),
shapes=(tf.TensorShape([1, 1, 2, 3]),
tf.TensorShape([5, 8])), name="Q")
self.assertTrue(isinstance(q.queue_ref, tf.Tensor))
self.assertEquals(tf.string_ref, q.queue_ref.dtype)
self.assertProtoEquals("""
name:'Q' op:'FIFOQueue'
attr { key: 'component_types' value { list {
type: DT_INT32 type : DT_FLOAT
} } }
attr { key: 'shapes' value { list {
shape { dim { size: 1 }
dim { size: 1 }
dim { size: 2 }
dim { size: 3 } }
shape { dim { size: 5 }
dim { size: 8 } }
} } }
attr { key: 'capacity' value { i: 5 } }
attr { key: 'container' value { s: '' } }
attr { key: 'shared_name' value { s: '' } }
""", q.queue_ref.op.node_def)