本文整理匯總了Python中tensorflow.Examples方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.Examples方法的具體用法?Python tensorflow.Examples怎麽用?Python tensorflow.Examples使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.Examples方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: fill_example_queue
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Examples [as 別名]
def fill_example_queue(self):
"""Reads data from file and processes into Examples which are then placed into the example queue."""
input_gen = self.text_generator(data.example_generator(self._data_path, self._single_pass))
while True:
try:
(article, abstract) = input_gen.next() # read the next example from file. article and abstract are both strings.
except StopIteration: # if there are no more examples:
tf.logging.info("The example generator for this example queue filling thread has exhausted data.")
if self._single_pass:
tf.logging.info("single_pass mode is on, so we've finished reading dataset. This thread is stopping.")
self._finished_reading = True
break
else:
raise Exception("single_pass mode is off but the example generator is out of data; error.")
abstract_sentences = [sent.strip() for sent in data.abstract2sents(abstract)] # Use the <s> and </s> tags in abstract to get a list of sentences.
if abstract_sentences is None or len(abstract_sentences) == 0: continue
example = Example(article, abstract_sentences, self._vocab, self._hps) # Process into an Example.
self._example_queue.put(example) # place the Example in the example queue.
示例2: text_generator
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Examples [as 別名]
def text_generator(self, example_generator):
"""Generates article and abstract text from tf.Example.
Args:
example_generator: a generator of tf.Examples from file. See data.example_generator"""
cnt = 0
while True:
e = example_generator.next() # e is a tf.Example
try:
article_text = e.features.feature['article'].bytes_list.value[0] # the article text was saved under the key 'article' in the data files
abstract_text = e.features.feature['abstract'].bytes_list.value[0] # the abstract text was saved under the key 'abstract' in the data files
except ValueError:
tf.logging.error('Failed to get article or abstract from example')
continue
if len(article_text)==0 or len(abstract_text)==0: # See https://github.com/abisee/pointer-generator/issues/1
tf.logging.warning('Found an example with empty article text. Skipping it.')
else:
if self._single_pass and cnt < self._decode_after: #skip already decoded docs
cnt +=1
continue
yield (article_text, abstract_text)
示例3: write_tfrecord_file
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Examples [as 別名]
def write_tfrecord_file(output_filepath, some_h5_files):
"""Write tf.Examples given a list of h5_files.
Args:
output_filepath: str
some_h5_files: List[str]
"""
tf_record_options = tf.python_io.TFRecordOptions(tf.python_io.TFRecordCompressionType.GZIP)
writer = tf.python_io.TFRecordWriter(output_filepath, options=tf_record_options)
# Read a batch of h5 files
for f in some_h5_files:
tf_examples = list(read_h5_file(f)) # type: List[tf.Example]
# Serialize to string
tf_example_strs = map(lambda ex: ex.SerializeToString(), tf_examples)
# Write
for example_str in tf_example_strs:
writer.write(example_str)
writer.close()
示例4: fill_example_queue
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Examples [as 別名]
def fill_example_queue(self):
"""Reads data from file and processes into Examples which are then placed into the example queue."""
input_gen = self.text_generator(data.example_generator(self._data_path, self._single_pass))
while True:
try:
(article, abstract) = input_gen.next() # read the next example from file. article and abstract are both strings.
except StopIteration: # if there are no more examples:
tf.logging.info("The example generator for this example queue filling thread has exhausted data.")
if self._single_pass:
tf.logging.info("single_pass mode is on, so we've finished reading dataset. This thread is stopping.")
self._finished_reading = True
break
else:
raise Exception("single_pass mode is off but the example generator is out of data; error.")
abstract_sentences = [sent.strip() for sent in data.abstract2sents(abstract)] # Use the <s> and </s> tags in abstract to get a list of sentences.
example = Example(article, abstract_sentences, self._vocab, self._hps) # Process into an Example.
self._example_queue.put(example) # place the Example in the example queue.
示例5: text_generator
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Examples [as 別名]
def text_generator(self, example_generator):
"""Generates article and abstract text from tf.Example.
Args:
example_generator: a generator of tf.Examples from file. See data.example_generator"""
cnt = 0
while True:
e = example_generator.next() # e is a tf.Example
try:
article_text = e.features.feature['article'].bytes_list.value[0] # the article text was saved under the key 'article' in the data files
abstract_text = e.features.feature['abstract'].bytes_list.value[0] # the abstract text was saved under the key 'abstract' in the data files
except ValueError:
tf.logging.error('Failed to get article or abstract from example')
continue
if len(article_text)==0: # See https://github.com/abisee/pointer-generator/issues/1
tf.logging.warning('Found an example with empty article text. Skipping it.')
else:
if self._single_pass and cnt < self._decode_after: #skip already decoded docs
cnt +=1
continue
yield (article_text, abstract_text)
示例6: shuffle_tf_examples
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Examples [as 別名]
def shuffle_tf_examples(gather_size, records_to_shuffle):
'''Read through tf.Record and yield shuffled, but unparsed tf.Examples
Args:
gather_size: The number of tf.Examples to be gathered together
records_to_shuffle: A list of filenames
Returns:
An iterator yielding lists of bytes, which are serialized tf.Examples.
'''
dataset = read_tf_records(gather_size, records_to_shuffle, num_repeats=1)
batch = dataset.make_one_shot_iterator().get_next()
sess = tf.Session()
while True:
try:
result = sess.run(batch)
yield list(result)
except tf.errors.OutOfRangeError:
break
示例7: _write_subset
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Examples [as 別名]
def _write_subset(dataset_name, name, values):
"""Writes the tf.Examples in a subset to TFRecord files."""
if name == "train":
num_shards = FLAGS.num_shards_train
elif name == "val":
num_shards = FLAGS.num_shards_val
elif name == "test":
num_shards = FLAGS.num_shards_test
else:
raise ValueError("Unrecognized subset name: {}".format(name))
# Write the tf.Examples in TFRecord format.
utils.write_to_tfrecord(
values,
output_dir=os.path.join(FLAGS.output_dir, dataset_name),
output_name=name,
value_name="example",
value_coder=beam.coders.ProtoCoder(tf.train.Example),
num_shards=num_shards,
stage_name_suffix=dataset_name)
示例8: fill_example_queue
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Examples [as 別名]
def fill_example_queue(self):
"""Reads data from file and processes into Examples which are then placed into the example queue."""
input_gen = self.text_generator(data.example_generator(self._data_path, self._single_pass))
while True:
try:
# (article, abstract) = next(input_gen) # read the next example from file. article and abstract are both strings.
(article) = next(input_gen) # read the next example from file. article and abstract are both strings.
except StopIteration: # if there are no more examples:
tf.logging.info("The example generator for this example queue filling thread has exhausted data.")
if self._single_pass:
tf.logging.info(
"single_pass mode is on, so we've finished reading dataset. This thread is stopping.")
self._finished_reading = True
break
else:
raise Exception("single_pass mode is off but the example generator is out of data; error.")
# abstract_sentences = [sent.strip() for sent in data.abstract2sents(abstract)] # Use the <s> and </s> tags in abstract to get a list of sentences.
example = Example(article, article, self._vocab, self._hps) # Process into an Example.
self._example_queue.put(example) # place the Example in the example queue.
示例9: text_generator
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Examples [as 別名]
def text_generator(self, example_generator):
"""Generates article and abstract text from tf.Example.
Args:
example_generator: a generator of tf.Examples from file. See data.example_generator"""
while True:
e = next(example_generator) # e is a tf.Example
try:
article_text = e.features.feature['article'].bytes_list.value[
0].decode() # the article text was saved under the key 'article' in the data files
# abstract_text = e.features.feature['abstract'].bytes_list.value[0].decode() # the abstract text was saved under the key 'abstract' in the data files
except ValueError:
tf.logging.error('Failed to get article or abstract from example')
continue
if len(article_text) == 0: # See https://github.com/abisee/pointer-generator/issues/1
tf.logging.warning('Found an example with empty article text. Skipping it.')
else:
# yield (article_text, abstract_text)
yield (article_text)
示例10: fill_example_queue
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Examples [as 別名]
def fill_example_queue(self):
"""Reads data from file and processes into Examples which are then placed into the example queue."""
input_gen = self.text_generator(data.example_generator(self._data_path, self._single_pass))
while True:
try:
(article, abstract, extract_ids) = input_gen.next() # read the next example from file. article and abstract are both strings.
except StopIteration: # if there are no more examples:
tf.logging.info("The example generator for this example queue filling thread has exhausted data.")
if self._single_pass:
tf.logging.info("single_pass mode is on, so we've finished reading dataset. This thread is stopping.")
self._finished_reading = True
break
else:
raise Exception("single_pass mode is off but the example generator is out of data; error.")
article_sentences = [sent.strip() for sent in data.document2sents(article)]
abstract_sentences = [sent.strip() for sent in data.document2sents(abstract)] # Use the <s> and </s> tags in abstract to get a list of sentences.
extract_ids = extract_ids.split(',')
extract_ids = [int(i) for i in extract_ids]
example = Example(article_sentences, extract_ids, abstract_sentences, self._vocab, self._hps) # Process into an Example.
self._example_queue.put(example) # place the Example in the example queue.
示例11: text_generator
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Examples [as 別名]
def text_generator(self, example_generator):
"""Generates article and abstract text from tf.Example.
Args:
example_generator: a generator of tf.Examples from file. See data.example_generator"""
while True:
e = example_generator.next() # e is a tf.Example
try:
article_text = e.features.feature['article'].bytes_list.value[0] # the article text was saved under the key 'article' in the data files
abstract_text = e.features.feature['abstract'].bytes_list.value[0] # the abstract text was saved under the key 'abstract' in the data files
extract_ids_str = e.features.feature['extract_ids'].bytes_list.value[0]
except ValueError:
tf.logging.error('Failed to get article or abstract from example')
continue
if len(article_text)==0: # See https://github.com/abisee/pointer-generator/issues/1
tf.logging.warning('Found an example with empty article text. Skipping it.')
else:
yield (article_text, abstract_text, extract_ids_str)
示例12: text_generator
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Examples [as 別名]
def text_generator(self, example_generator):
"""Generates article and abstract text from tf.Example.
Args:
example_generator: a generator of tf.Examples from file. See data.example_generator"""
while True:
e = example_generator.next() # e is a tf.Example
try:
article_text = e.features.feature['article'].bytes_list.value[0] # the article text was saved under the key 'article' in the data files
abstract_text = e.features.feature['abstract'].bytes_list.value[0] # the abstract text was saved under the key 'abstract' in the data files
except ValueError:
tf.logging.error('Failed to get article or abstract from example')
continue
if len(article_text)==0: # See https://github.com/abisee/pointer-generator/issues/1
tf.logging.warning('Found an example with empty article text. Skipping it.')
else:
yield (article_text, abstract_text)
示例13: fill_batch_queue
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Examples [as 別名]
def fill_batch_queue(self):
"""Takes Examples out of example queue, sorts them by encoder sequence length, processes into Batches and places them in the batch queue.
In decode mode, makes batches that each contain a single example repeated.
"""
while True:
if self._hps.mode != 'decode':
# Get bucketing_cache_size-many batches of Examples into a list, then sort
inputs = []
for _ in range(self._hps.batch_size * self._bucketing_cache_size):
inputs.append(self._example_queue.get())
inputs = sorted(inputs, key=lambda inp: inp.enc_len) # sort by length of encoder sequence
# Group the sorted Examples into batches, optionally shuffle the batches, and place in the batch queue.
batches = []
for i in range(0, len(inputs), self._hps.batch_size):
batches.append(inputs[i:i + self._hps.batch_size])
if not self._single_pass:
shuffle(batches)
for b in batches: # each b is a list of Example objects
self._batch_queue.put(Batch.create_batch(b, self._hps, self._vocab))
else: # beam search decode mode
ex = self._example_queue.get()
b = [ex for _ in range(self._hps.batch_size)]
self._batch_queue.put(Batch.create_batch(b, self._hps, self._vocab))
示例14: fill_batch_queue
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Examples [as 別名]
def fill_batch_queue(self):
"""Takes Examples out of example queue, sorts them by encoder sequence length, processes into Batches and places them in the batch queue.
In decode mode, makes batches that each contain a single example repeated.
"""
while True:
if self._hps.mode != 'decode':
# Get bucketing_cache_size-many batches of Examples into a list, then sort
inputs = []
for _ in range(self._hps.batch_size * self._bucketing_cache_size):
inputs.append(self._example_queue.get())
inputs = sorted(inputs, key=lambda inp: inp.enc_len) # sort by length of encoder sequence
# Group the sorted Examples into batches, optionally shuffle the batches, and place in the batch queue.
batches = []
for i in range(0, len(inputs), self._hps.batch_size):
batches.append(inputs[i:i + self._hps.batch_size])
if not self._single_pass:
shuffle(batches)
for b in batches: # each b is a list of Example objects
self._batch_queue.put(Batch(b, self._hps, self._vocab))
else: # beam search decode mode
ex = self._example_queue.get()
b = [ex for _ in range(self._hps.batch_size)]
self._batch_queue.put(Batch(b, self._hps, self._vocab))
示例15: make_dataset_from_selfplay
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Examples [as 別名]
def make_dataset_from_selfplay(data_extracts):
'''
Returns an iterable of tf.Examples.
Args:
data_extracts: An iterable of (position, pi, result) tuples
'''
tf_examples = (make_tf_example(features_lib.extract_features(pos), pi, result)
for pos, pi, result in data_extracts)
return tf_examples