當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.Example方法代碼示例

本文整理匯總了Python中tensorflow.Example方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.Example方法的具體用法?Python tensorflow.Example怎麽用?Python tensorflow.Example使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.Example方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: create_serialized_example

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Example [as 別名]
def create_serialized_example(name_to_values):
  """Creates a tf.Example proto using a dictionary.

  It automatically detects type of values and define a corresponding feature.

  Args:
    name_to_values: A dictionary.

  Returns:
    tf.Example proto.
  """
  example = tf.train.Example()
  for name, values in name_to_values.items():
    feature = example.features.feature[name]
    if isinstance(values[0], str):
      add = feature.bytes_list.value.extend
    elif isinstance(values[0], float):
      add = feature.float32_list.value.extend
    elif isinstance(values[0], int):
      add = feature.int64_list.value.extend
    else:
      raise AssertionError('Unsupported type: %s' % type(values[0]))
    add(values)
  return example.SerializeToString() 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:26,代碼來源:unittest_utils.py

示例2: to_example

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Example [as 別名]
def to_example(dictionary):
  """Helper: build tf.Example from (string -> int/float/str list) dictionary."""
  features = {}
  for (k, v) in six.iteritems(dictionary):
    if not v:
      raise ValueError("Empty generated field: %s" % str((k, v)))
    if isinstance(v[0], six.integer_types):
      features[k] = tf.train.Feature(int64_list=tf.train.Int64List(value=v))
    elif isinstance(v[0], float):
      features[k] = tf.train.Feature(float_list=tf.train.FloatList(value=v))
    elif isinstance(v[0], six.string_types):
      if not six.PY2:  # Convert in python 3.
        v = [bytes(x, "utf-8") for x in v]
      features[k] = tf.train.Feature(bytes_list=tf.train.BytesList(value=v))
    elif isinstance(v[0], bytes):
      features[k] = tf.train.Feature(bytes_list=tf.train.BytesList(value=v))
    else:
      raise ValueError("Value for %s is not a recognized type; v: %s type: %s" %
                       (k, str(v[0]), str(type(v[0]))))
  return tf.train.Example(features=tf.train.Features(feature=features)) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:22,代碼來源:generator_utils.py

示例3: fill_example_queue

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Example [as 別名]
def fill_example_queue(self):
    """Reads data from file and processes into Examples which are then placed into the example queue."""

    input_gen = self.text_generator(data.example_generator(self._data_path, self._single_pass))

    while True:
      try:
        (article, abstract) = input_gen.next() # read the next example from file. article and abstract are both strings.
      except StopIteration: # if there are no more examples:
        tf.logging.info("The example generator for this example queue filling thread has exhausted data.")
        if self._single_pass:
          tf.logging.info("single_pass mode is on, so we've finished reading dataset. This thread is stopping.")
          self._finished_reading = True
          break
        else:
          raise Exception("single_pass mode is off but the example generator is out of data; error.")

      abstract_sentences = [sent.strip() for sent in data.abstract2sents(abstract)] # Use the <s> and </s> tags in abstract to get a list of sentences.
      if abstract_sentences is None or len(abstract_sentences) == 0: continue
      example = Example(article, abstract_sentences, self._vocab, self._hps) # Process into an Example.
      self._example_queue.put(example) # place the Example in the example queue. 
開發者ID:yaserkl,項目名稱:TransferRL,代碼行數:23,代碼來源:batcher.py

示例4: encodes_example

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Example [as 別名]
def encodes_example(feature, label):
    """Encodes to TF Example
    
    Args:
      feature: feature to encode
      label: label corresponding to feature
      
    Returns:
      tf.Example object
    """
    def _bytes_feature(value):
        """Creates a TensorFlow Record Feature with value as a byte array.
        """
        return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))

    def _int64_feature(value):
        """Creates a TensorFlow Record Feature with value as a 64 bit integer.
        """
        return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))

    features = {AUDIO_FEATURE_NAME: _bytes_feature(feature.tobytes()),
                AUDIO_LABEL_NAME: _int64_feature(label)}
    return tf.train.Example(features=tf.train.Features(feature=features)) 
開發者ID:luuil,項目名稱:Tensorflow-Audio-Classification,代碼行數:25,代碼來源:audio_records.py

示例5: process_feature

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Example [as 別名]
def process_feature(self, feature):
    """Write a InputFeature to the TFRecordWriter as a tf.train.Example."""
    self.num_features += 1

    def create_int_feature(values):
      feature = tf.train.Feature(
          int64_list=tf.train.Int64List(value=list(values)))
      return feature

    features = collections.OrderedDict()
    features["unique_ids"] = create_int_feature([feature.unique_id])
    features["input_ids"] = create_int_feature(feature.input_ids)
    features["input_mask"] = create_int_feature(feature.input_mask)
    features["segment_ids"] = create_int_feature(feature.segment_ids)

    if self.is_training:
      features["start_positions"] = create_int_feature([feature.start_position])
      features["end_positions"] = create_int_feature([feature.end_position])
      impossible = 0
      if feature.is_impossible:
        impossible = 1
      features["is_impossible"] = create_int_feature([impossible])

    tf_example = tf.train.Example(features=tf.train.Features(feature=features))
    self._writer.write(tf_example.SerializeToString()) 
開發者ID:Nagakiran1,項目名稱:Extending-Google-BERT-as-Question-and-Answering-model-and-Chatbot,代碼行數:27,代碼來源:run_squad.py

示例6: process_feature

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Example [as 別名]
def process_feature(self, feature):
    """Write a InputFeature to the TFRecordWriter as a tf.train.Example."""
    self.num_features += 1

    def create_int_feature(values):
      feature = tf.train.Feature(
          int64_list=tf.train.Int64List(value=list(values)))
      return feature

    features = collections.OrderedDict()
    features["unique_ids"] = create_int_feature([feature.unique_id])
    features["input_ids"] = create_int_feature(feature.input_ids)
    features["input_mask"] = create_int_feature(feature.input_mask)
    features["segment_ids"] = create_int_feature(feature.segment_ids)

    tf_example = tf.train.Example(features=tf.train.Features(feature=features))
    self._writer.write(tf_example.SerializeToString()) 
開發者ID:thunlp,項目名稱:XQA,代碼行數:19,代碼來源:run_bert_open_qa_eval.py

示例7: write_tfrecord_file

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Example [as 別名]
def write_tfrecord_file(output_filepath, some_h5_files):
    """Write tf.Examples given a list of h5_files.

    Args:
        output_filepath: str
        some_h5_files: List[str]
    """
    tf_record_options = tf.python_io.TFRecordOptions(tf.python_io.TFRecordCompressionType.GZIP)
    writer = tf.python_io.TFRecordWriter(output_filepath, options=tf_record_options)

    # Read a batch of h5 files
    for f in some_h5_files:
        tf_examples = list(read_h5_file(f))  # type: List[tf.Example]

        # Serialize to string
        tf_example_strs = map(lambda ex: ex.SerializeToString(), tf_examples)

        # Write
        for example_str in tf_example_strs:
            writer.write(example_str)

    writer.close() 
開發者ID:merantix,項目名稱:imitation-learning,代碼行數:24,代碼來源:preprocessor.py

示例8: file_based_convert_examples_to_features

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Example [as 別名]
def file_based_convert_examples_to_features(
    examples, label_list, max_seq_length, tokenizer, output_file):
  """Convert a set of `InputExample`s to a TFRecord file."""

  writer = tf.python_io.TFRecordWriter(output_file)

  for (ex_index, example) in enumerate(examples):
    if ex_index % 10000 == 0:
      tf.logging.info("Writing example %d of %d" % (ex_index, len(examples)))

    feature = convert_single_example(ex_index, example, label_list,
                                     max_seq_length, tokenizer)

    def create_int_feature(values):
      f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
      return f

    features = collections.OrderedDict()
    features["input_ids"] = create_int_feature(feature.input_ids)
    features["input_mask"] = create_int_feature(feature.input_mask)
    features["segment_ids"] = create_int_feature(feature.segment_ids)
    features["label_ids"] = create_int_feature([feature.label_id])

    tf_example = tf.train.Example(features=tf.train.Features(feature=features))
    writer.write(tf_example.SerializeToString()) 
開發者ID:lampts,項目名稱:wsdm19cup,代碼行數:27,代碼來源:run_classifier_v2.py

示例9: fill_example_queue

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Example [as 別名]
def fill_example_queue(self):
    """Reads data from file and processes into Examples which are then placed into the example queue."""

    input_gen = self.text_generator(data.example_generator(self._data_path, self._single_pass))

    while True:
      try:
        (article, abstract) = input_gen.next() # read the next example from file. article and abstract are both strings.
      except StopIteration: # if there are no more examples:
        tf.logging.info("The example generator for this example queue filling thread has exhausted data.")
        if self._single_pass:
          tf.logging.info("single_pass mode is on, so we've finished reading dataset. This thread is stopping.")
          self._finished_reading = True
          break
        else:
          raise Exception("single_pass mode is off but the example generator is out of data; error.")

      abstract_sentences = [sent.strip() for sent in data.abstract2sents(abstract)] # Use the <s> and </s> tags in abstract to get a list of sentences.
      example = Example(article, abstract_sentences, self._vocab, self._hps) # Process into an Example.
      self._example_queue.put(example) # place the Example in the example queue. 
開發者ID:yaserkl,項目名稱:RLSeq2Seq,代碼行數:22,代碼來源:batcher.py

示例10: process_feature

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Example [as 別名]
def process_feature(self, feature):
    """Write a InputFeature to the TFRecordWriter as a tf.train.Example."""
    self.num_features += 1

    def create_int_feature(values):
      feature = tf.train.Feature(
          int64_list=tf.train.Int64List(value=list(values)))
      return feature

    features = collections.OrderedDict()
    features["unique_ids"] = create_int_feature([feature.unique_id])
    features["input_ids"] = create_int_feature(feature.input_ids)
    features["input_mask"] = create_int_feature(feature.input_mask)
    features["segment_ids"] = create_int_feature(feature.segment_ids)

    if self.is_training:
      features["start_positions"] = create_int_feature([feature.start_position])
      features["end_positions"] = create_int_feature([feature.end_position])

    tf_example = tf.train.Example(features=tf.train.Features(feature=features))
    self._writer.write(tf_example.SerializeToString()) 
開發者ID:yyht,項目名稱:BERT,代碼行數:23,代碼來源:run_squad.py

示例11: file_based_convert_examples_to_features

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Example [as 別名]
def file_based_convert_examples_to_features(
        examples, label_list, max_seq_length, tokenizer, output_file):
    """Convert a set of `InputExample`s to a TFRecord file."""

    writer = tf.python_io.TFRecordWriter(output_file)
    
    label_map = {}
    for (i, label) in enumerate(sorted(label_list)):
        label_map[label] = i
        
    for (ex_index, example) in enumerate(examples):
        if ex_index % 10000 == 0:
            tf.logging.info("Writing example %d of %d" % (ex_index, len(examples)))

        feature = convert_single_example(ex_index, example, label_map,
                                                    max_seq_length, tokenizer)

        def create_int_feature(values):
            f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
            return f

        features = collections.OrderedDict()
        features["input_ids"] = create_int_feature(feature.input_ids)
        features["input_mask"] = create_int_feature(feature.input_mask)
        features["segment_ids"] = create_int_feature(feature.segment_ids)
        features["label_ids"] = create_int_feature([feature.label_id])

        tf_example = tf.train.Example(features=tf.train.Features(feature=features))
        writer.write(tf_example.SerializeToString())
    return label_map 
開發者ID:Socialbird-AILab,項目名稱:BERT-Classification-Tutorial,代碼行數:32,代碼來源:run_classifier.py

示例12: parse_example_batch

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Example [as 別名]
def parse_example_batch(serialized):
  """Parses a batch of tf.Example protos.

  Args:
    serialized: A 1-D string Tensor; a batch of serialized tf.Example protos.
  Returns:
    encode: A SentenceBatch of encode sentences.
    decode_pre: A SentenceBatch of "previous" sentences to decode.
    decode_post: A SentenceBatch of "post" sentences to decode.
  """
  features = tf.parse_example(
      serialized,
      features={
          "encode": tf.VarLenFeature(dtype=tf.int64),
          "decode_pre": tf.VarLenFeature(dtype=tf.int64),
          "decode_post": tf.VarLenFeature(dtype=tf.int64),
      })

  def _sparse_to_batch(sparse):
    ids = tf.sparse_tensor_to_dense(sparse)  # Padding with zeroes.
    mask = tf.sparse_to_dense(sparse.indices, sparse.dense_shape,
                              tf.ones_like(sparse.values, dtype=tf.int32))
    return SentenceBatch(ids=ids, mask=mask)

  output_names = ("encode", "decode_pre", "decode_post")
  return tuple(_sparse_to_batch(features[x]) for x in output_names) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:28,代碼來源:input_ops.py

示例13: _TextGenerator

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Example [as 別名]
def _TextGenerator(self, example_gen):
    """Generates article and abstract text from tf.Example."""
    while True:
      e = six.next(example_gen)
      try:
        article_text = self._GetExFeatureText(e, self._article_key)
        abstract_text = self._GetExFeatureText(e, self._abstract_key)
      except ValueError:
        tf.logging.error('Failed to get article or abstract from example')
        continue

      yield (article_text, abstract_text) 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:14,代碼來源:batch_reader.py

示例14: get_class_name_from_filename

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Example [as 別名]
def get_class_name_from_filename(file_name):
  """Gets the class name from a file.

  Args:
    file_name: The file name to get the class name from.
               ie. "american_pit_bull_terrier_105.jpg"

  Returns:
    example: The converted tf.Example.
  """
  match = re.match(r'([A-Za-z_]+)(_[0-9]+\.jpg)', file_name, re.I)
  return match.groups()[0] 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:14,代碼來源:create_pet_tf_record.py

示例15: ReadFirstCode

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Example [as 別名]
def ReadFirstCode(dataset):
  """Read the first example from a binary code RecordIO table."""
  for record in tf.python_io.tf_record_iterator(dataset):
    tf_example = tf.train.Example()
    tf_example.ParseFromString(record)
    break
  return tf_example 
開發者ID:ringringyi,項目名稱:DOTA_models,代碼行數:9,代碼來源:code_loader.py


注:本文中的tensorflow.Example方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。