本文整理匯總了Python中tensorflow.Example方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.Example方法的具體用法?Python tensorflow.Example怎麽用?Python tensorflow.Example使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.Example方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: create_serialized_example
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Example [as 別名]
def create_serialized_example(name_to_values):
"""Creates a tf.Example proto using a dictionary.
It automatically detects type of values and define a corresponding feature.
Args:
name_to_values: A dictionary.
Returns:
tf.Example proto.
"""
example = tf.train.Example()
for name, values in name_to_values.items():
feature = example.features.feature[name]
if isinstance(values[0], str):
add = feature.bytes_list.value.extend
elif isinstance(values[0], float):
add = feature.float32_list.value.extend
elif isinstance(values[0], int):
add = feature.int64_list.value.extend
else:
raise AssertionError('Unsupported type: %s' % type(values[0]))
add(values)
return example.SerializeToString()
示例2: to_example
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Example [as 別名]
def to_example(dictionary):
"""Helper: build tf.Example from (string -> int/float/str list) dictionary."""
features = {}
for (k, v) in six.iteritems(dictionary):
if not v:
raise ValueError("Empty generated field: %s" % str((k, v)))
if isinstance(v[0], six.integer_types):
features[k] = tf.train.Feature(int64_list=tf.train.Int64List(value=v))
elif isinstance(v[0], float):
features[k] = tf.train.Feature(float_list=tf.train.FloatList(value=v))
elif isinstance(v[0], six.string_types):
if not six.PY2: # Convert in python 3.
v = [bytes(x, "utf-8") for x in v]
features[k] = tf.train.Feature(bytes_list=tf.train.BytesList(value=v))
elif isinstance(v[0], bytes):
features[k] = tf.train.Feature(bytes_list=tf.train.BytesList(value=v))
else:
raise ValueError("Value for %s is not a recognized type; v: %s type: %s" %
(k, str(v[0]), str(type(v[0]))))
return tf.train.Example(features=tf.train.Features(feature=features))
示例3: fill_example_queue
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Example [as 別名]
def fill_example_queue(self):
"""Reads data from file and processes into Examples which are then placed into the example queue."""
input_gen = self.text_generator(data.example_generator(self._data_path, self._single_pass))
while True:
try:
(article, abstract) = input_gen.next() # read the next example from file. article and abstract are both strings.
except StopIteration: # if there are no more examples:
tf.logging.info("The example generator for this example queue filling thread has exhausted data.")
if self._single_pass:
tf.logging.info("single_pass mode is on, so we've finished reading dataset. This thread is stopping.")
self._finished_reading = True
break
else:
raise Exception("single_pass mode is off but the example generator is out of data; error.")
abstract_sentences = [sent.strip() for sent in data.abstract2sents(abstract)] # Use the <s> and </s> tags in abstract to get a list of sentences.
if abstract_sentences is None or len(abstract_sentences) == 0: continue
example = Example(article, abstract_sentences, self._vocab, self._hps) # Process into an Example.
self._example_queue.put(example) # place the Example in the example queue.
示例4: encodes_example
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Example [as 別名]
def encodes_example(feature, label):
"""Encodes to TF Example
Args:
feature: feature to encode
label: label corresponding to feature
Returns:
tf.Example object
"""
def _bytes_feature(value):
"""Creates a TensorFlow Record Feature with value as a byte array.
"""
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
def _int64_feature(value):
"""Creates a TensorFlow Record Feature with value as a 64 bit integer.
"""
return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))
features = {AUDIO_FEATURE_NAME: _bytes_feature(feature.tobytes()),
AUDIO_LABEL_NAME: _int64_feature(label)}
return tf.train.Example(features=tf.train.Features(feature=features))
示例5: process_feature
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Example [as 別名]
def process_feature(self, feature):
"""Write a InputFeature to the TFRecordWriter as a tf.train.Example."""
self.num_features += 1
def create_int_feature(values):
feature = tf.train.Feature(
int64_list=tf.train.Int64List(value=list(values)))
return feature
features = collections.OrderedDict()
features["unique_ids"] = create_int_feature([feature.unique_id])
features["input_ids"] = create_int_feature(feature.input_ids)
features["input_mask"] = create_int_feature(feature.input_mask)
features["segment_ids"] = create_int_feature(feature.segment_ids)
if self.is_training:
features["start_positions"] = create_int_feature([feature.start_position])
features["end_positions"] = create_int_feature([feature.end_position])
impossible = 0
if feature.is_impossible:
impossible = 1
features["is_impossible"] = create_int_feature([impossible])
tf_example = tf.train.Example(features=tf.train.Features(feature=features))
self._writer.write(tf_example.SerializeToString())
開發者ID:Nagakiran1,項目名稱:Extending-Google-BERT-as-Question-and-Answering-model-and-Chatbot,代碼行數:27,代碼來源:run_squad.py
示例6: process_feature
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Example [as 別名]
def process_feature(self, feature):
"""Write a InputFeature to the TFRecordWriter as a tf.train.Example."""
self.num_features += 1
def create_int_feature(values):
feature = tf.train.Feature(
int64_list=tf.train.Int64List(value=list(values)))
return feature
features = collections.OrderedDict()
features["unique_ids"] = create_int_feature([feature.unique_id])
features["input_ids"] = create_int_feature(feature.input_ids)
features["input_mask"] = create_int_feature(feature.input_mask)
features["segment_ids"] = create_int_feature(feature.segment_ids)
tf_example = tf.train.Example(features=tf.train.Features(feature=features))
self._writer.write(tf_example.SerializeToString())
示例7: write_tfrecord_file
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Example [as 別名]
def write_tfrecord_file(output_filepath, some_h5_files):
"""Write tf.Examples given a list of h5_files.
Args:
output_filepath: str
some_h5_files: List[str]
"""
tf_record_options = tf.python_io.TFRecordOptions(tf.python_io.TFRecordCompressionType.GZIP)
writer = tf.python_io.TFRecordWriter(output_filepath, options=tf_record_options)
# Read a batch of h5 files
for f in some_h5_files:
tf_examples = list(read_h5_file(f)) # type: List[tf.Example]
# Serialize to string
tf_example_strs = map(lambda ex: ex.SerializeToString(), tf_examples)
# Write
for example_str in tf_example_strs:
writer.write(example_str)
writer.close()
示例8: file_based_convert_examples_to_features
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Example [as 別名]
def file_based_convert_examples_to_features(
examples, label_list, max_seq_length, tokenizer, output_file):
"""Convert a set of `InputExample`s to a TFRecord file."""
writer = tf.python_io.TFRecordWriter(output_file)
for (ex_index, example) in enumerate(examples):
if ex_index % 10000 == 0:
tf.logging.info("Writing example %d of %d" % (ex_index, len(examples)))
feature = convert_single_example(ex_index, example, label_list,
max_seq_length, tokenizer)
def create_int_feature(values):
f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
return f
features = collections.OrderedDict()
features["input_ids"] = create_int_feature(feature.input_ids)
features["input_mask"] = create_int_feature(feature.input_mask)
features["segment_ids"] = create_int_feature(feature.segment_ids)
features["label_ids"] = create_int_feature([feature.label_id])
tf_example = tf.train.Example(features=tf.train.Features(feature=features))
writer.write(tf_example.SerializeToString())
示例9: fill_example_queue
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Example [as 別名]
def fill_example_queue(self):
"""Reads data from file and processes into Examples which are then placed into the example queue."""
input_gen = self.text_generator(data.example_generator(self._data_path, self._single_pass))
while True:
try:
(article, abstract) = input_gen.next() # read the next example from file. article and abstract are both strings.
except StopIteration: # if there are no more examples:
tf.logging.info("The example generator for this example queue filling thread has exhausted data.")
if self._single_pass:
tf.logging.info("single_pass mode is on, so we've finished reading dataset. This thread is stopping.")
self._finished_reading = True
break
else:
raise Exception("single_pass mode is off but the example generator is out of data; error.")
abstract_sentences = [sent.strip() for sent in data.abstract2sents(abstract)] # Use the <s> and </s> tags in abstract to get a list of sentences.
example = Example(article, abstract_sentences, self._vocab, self._hps) # Process into an Example.
self._example_queue.put(example) # place the Example in the example queue.
示例10: process_feature
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Example [as 別名]
def process_feature(self, feature):
"""Write a InputFeature to the TFRecordWriter as a tf.train.Example."""
self.num_features += 1
def create_int_feature(values):
feature = tf.train.Feature(
int64_list=tf.train.Int64List(value=list(values)))
return feature
features = collections.OrderedDict()
features["unique_ids"] = create_int_feature([feature.unique_id])
features["input_ids"] = create_int_feature(feature.input_ids)
features["input_mask"] = create_int_feature(feature.input_mask)
features["segment_ids"] = create_int_feature(feature.segment_ids)
if self.is_training:
features["start_positions"] = create_int_feature([feature.start_position])
features["end_positions"] = create_int_feature([feature.end_position])
tf_example = tf.train.Example(features=tf.train.Features(feature=features))
self._writer.write(tf_example.SerializeToString())
示例11: file_based_convert_examples_to_features
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Example [as 別名]
def file_based_convert_examples_to_features(
examples, label_list, max_seq_length, tokenizer, output_file):
"""Convert a set of `InputExample`s to a TFRecord file."""
writer = tf.python_io.TFRecordWriter(output_file)
label_map = {}
for (i, label) in enumerate(sorted(label_list)):
label_map[label] = i
for (ex_index, example) in enumerate(examples):
if ex_index % 10000 == 0:
tf.logging.info("Writing example %d of %d" % (ex_index, len(examples)))
feature = convert_single_example(ex_index, example, label_map,
max_seq_length, tokenizer)
def create_int_feature(values):
f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
return f
features = collections.OrderedDict()
features["input_ids"] = create_int_feature(feature.input_ids)
features["input_mask"] = create_int_feature(feature.input_mask)
features["segment_ids"] = create_int_feature(feature.segment_ids)
features["label_ids"] = create_int_feature([feature.label_id])
tf_example = tf.train.Example(features=tf.train.Features(feature=features))
writer.write(tf_example.SerializeToString())
return label_map
示例12: parse_example_batch
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Example [as 別名]
def parse_example_batch(serialized):
"""Parses a batch of tf.Example protos.
Args:
serialized: A 1-D string Tensor; a batch of serialized tf.Example protos.
Returns:
encode: A SentenceBatch of encode sentences.
decode_pre: A SentenceBatch of "previous" sentences to decode.
decode_post: A SentenceBatch of "post" sentences to decode.
"""
features = tf.parse_example(
serialized,
features={
"encode": tf.VarLenFeature(dtype=tf.int64),
"decode_pre": tf.VarLenFeature(dtype=tf.int64),
"decode_post": tf.VarLenFeature(dtype=tf.int64),
})
def _sparse_to_batch(sparse):
ids = tf.sparse_tensor_to_dense(sparse) # Padding with zeroes.
mask = tf.sparse_to_dense(sparse.indices, sparse.dense_shape,
tf.ones_like(sparse.values, dtype=tf.int32))
return SentenceBatch(ids=ids, mask=mask)
output_names = ("encode", "decode_pre", "decode_post")
return tuple(_sparse_to_batch(features[x]) for x in output_names)
示例13: _TextGenerator
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Example [as 別名]
def _TextGenerator(self, example_gen):
"""Generates article and abstract text from tf.Example."""
while True:
e = six.next(example_gen)
try:
article_text = self._GetExFeatureText(e, self._article_key)
abstract_text = self._GetExFeatureText(e, self._abstract_key)
except ValueError:
tf.logging.error('Failed to get article or abstract from example')
continue
yield (article_text, abstract_text)
示例14: get_class_name_from_filename
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Example [as 別名]
def get_class_name_from_filename(file_name):
"""Gets the class name from a file.
Args:
file_name: The file name to get the class name from.
ie. "american_pit_bull_terrier_105.jpg"
Returns:
example: The converted tf.Example.
"""
match = re.match(r'([A-Za-z_]+)(_[0-9]+\.jpg)', file_name, re.I)
return match.groups()[0]
示例15: ReadFirstCode
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Example [as 別名]
def ReadFirstCode(dataset):
"""Read the first example from a binary code RecordIO table."""
for record in tf.python_io.tf_record_iterator(dataset):
tf_example = tf.train.Example()
tf_example.ParseFromString(record)
break
return tf_example