本文整理匯總了Python中tensorflow.Estimator方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.Estimator方法的具體用法?Python tensorflow.Estimator怎麽用?Python tensorflow.Estimator使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.Estimator方法的12個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: construct_input_fn
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Estimator [as 別名]
def construct_input_fn(self, records, is_training):
"""Builds an estimator input_fn.
The input_fn is used to pass feature and target data to the train,
evaluate, and predict methods of the Estimator.
Method to be overridden by implementations.
Args:
records: A list of Strings, paths to TFRecords with image data.
is_training: Boolean, whether or not we're training.
Returns:
Function, that has signature of ()->(dict of features, target).
features is a dict mapping feature names to `Tensors`
containing the corresponding feature data (typically, just a single
key/value pair 'raw_data' -> image `Tensor` for TCN.
labels is a 1-D int32 `Tensor` holding labels.
"""
pass
示例2: evaluate
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Estimator [as 別名]
def evaluate(self):
"""Runs `Estimator` validation.
"""
config = self._config
# Get a list of validation tfrecords.
validation_dir = config.data.validation
validation_records = util.GetFilesRecursively(validation_dir)
# Define batch size.
self._batch_size = config.data.batch_size
# Create a subclass-defined training input function.
validation_input_fn = self.construct_input_fn(
validation_records, False)
# Create the estimator.
estimator = self._build_estimator(is_training=False)
# Run validation.
eval_batch_size = config.data.batch_size
num_eval_samples = config.val.num_eval_samples
num_eval_batches = int(num_eval_samples / eval_batch_size)
estimator.evaluate(input_fn=validation_input_fn, steps=num_eval_batches)
示例3: _input_fn_inference
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Estimator [as 別名]
def _input_fn_inference(self, input_fn, checkpoint_path, predict_keys=None):
"""Mode 1: tf.Estimator inference.
Args:
input_fn: Function, that has signature of ()->(dict of features, None).
This is a function called by the estimator to get input tensors (stored
in the features dict) to do inference over.
checkpoint_path: String, path to a specific checkpoint to restore.
predict_keys: List of strings, the keys of the `Tensors` in the features
dict (returned by the input_fn) to evaluate during inference.
Returns:
predictions: An Iterator, yielding evaluated values of `Tensors`
specified in `predict_keys`.
"""
# Create the estimator.
estimator = self._build_estimator(is_training=False)
# Create an iterator of predicted embeddings.
predictions = estimator.predict(input_fn=input_fn,
checkpoint_path=checkpoint_path,
predict_keys=predict_keys)
return predictions
示例4: export_model
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Estimator [as 別名]
def export_model(working_dir, model_path):
"""Take the latest checkpoint and export it to model_path for selfplay.
Assumes that all relevant model files are prefixed by the same name.
(For example, foo.index, foo.meta and foo.data-00000-of-00001).
Args:
working_dir: The directory where tf.estimator keeps its checkpoints
model_path: The path (can be a gs:// path) to export model to
"""
estimator = tf.estimator.Estimator(model_fn, model_dir=working_dir,
params='ignored')
latest_checkpoint = estimator.latest_checkpoint()
all_checkpoint_files = tf.gfile.Glob(latest_checkpoint + '*')
for filename in all_checkpoint_files:
suffix = filename.partition(latest_checkpoint)[2]
destination_path = model_path + suffix
print("Copying {} to {}".format(filename, destination_path))
tf.gfile.Copy(filename, destination_path)
示例5: bootstrap
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Estimator [as 別名]
def bootstrap():
"""Initialize a tf.Estimator run with random initial weights."""
# a bit hacky - forge an initial checkpoint with the name that subsequent
# Estimator runs will expect to find.
#
# Estimator will do this automatically when you call train(), but calling
# train() requires data, and I didn't feel like creating training data in
# order to run the full train pipeline for 1 step.
maybe_set_seed()
initial_checkpoint_name = 'model.ckpt-1'
save_file = os.path.join(FLAGS.work_dir, initial_checkpoint_name)
sess = tf.Session(graph=tf.Graph())
with sess.graph.as_default():
features, labels = get_inference_input()
model_fn(features, labels, tf.estimator.ModeKeys.PREDICT,
params=FLAGS.flag_values_dict())
sess.run(tf.global_variables_initializer())
tf.train.Saver().save(sess, save_file)
示例6: export_model
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Estimator [as 別名]
def export_model(model_path):
"""Take the latest checkpoint and copy it to model_path.
Assumes that all relevant model files are prefixed by the same name.
(For example, foo.index, foo.meta and foo.data-00000-of-00001).
Args:
model_path: The path (can be a gs:// path) to export model
"""
estimator = tf.estimator.Estimator(model_fn, model_dir=FLAGS.work_dir,
params=FLAGS.flag_values_dict())
latest_checkpoint = estimator.latest_checkpoint()
all_checkpoint_files = tf.gfile.Glob(latest_checkpoint + '*')
for filename in all_checkpoint_files:
suffix = filename.partition(latest_checkpoint)[2]
destination_path = model_path + suffix
print('Copying {} to {}'.format(filename, destination_path))
tf.gfile.Copy(filename, destination_path)
示例7: __init__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Estimator [as 別名]
def __init__(self, model=None, atoms=None, to_eV=1.0,
properties=['energy', 'forces', 'stress']):
"""PiNN interface with ASE as a calculator
Args:
model: tf.Estimator object
atoms: optional, ase Atoms object
properties: properties to calculate.
the properties to calculate is fixed for each calculator,
to avoid resetting the predictor during get_* calls.
"""
Calculator.__init__(self)
self.implemented_properties = properties
self.model = model
self.pbc = False
self.atoms = atoms
self.predictor = None
self.to_eV = to_eV
示例8: _verify_prefitting_model
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Estimator [as 別名]
def _verify_prefitting_model(prefitting_model, feature_names):
"""Checks that prefitting_model has the proper input layer."""
if isinstance(prefitting_model, tf.keras.Model):
layer_names = [layer.name for layer in prefitting_model.layers]
elif isinstance(prefitting_model, tf.estimator.Estimator):
layer_names = prefitting_model.get_variable_names()
else:
raise ValueError('Invalid model type for prefitting_model: {}'.format(
type(prefitting_model)))
for feature_name in feature_names:
if isinstance(prefitting_model, tf.keras.Model):
input_layer_name = '{}_{}'.format(INPUT_LAYER_NAME, feature_name)
if input_layer_name not in layer_names:
raise ValueError(
'prefitting_model does not match prefitting_model_config. Make '
'sure that prefitting_model is the proper type and constructed '
'from the prefitting_model_config: {}'.format(
type(prefitting_model)))
else:
pwl_input_layer_name = '{}_{}/{}'.format(
CALIB_LAYER_NAME, feature_name,
pwl_calibration_layer.PWL_CALIBRATION_KERNEL_NAME)
cat_input_layer_name = '{}_{}/{}'.format(
CALIB_LAYER_NAME, feature_name,
categorical_calibration_layer.CATEGORICAL_CALIBRATION_KERNEL_NAME)
if (pwl_input_layer_name not in layer_names and
cat_input_layer_name not in layer_names):
raise ValueError(
'prefitting_model does not match prefitting_model_config. Make '
'sure that prefitting_model is the proper type and constructed '
'from the prefitting_model_config: {}'.format(
type(prefitting_model)))
示例9: _get_lattice_weights
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Estimator [as 別名]
def _get_lattice_weights(prefitting_model, lattice_index):
"""Gets the weights of the lattice at the specfied index."""
if isinstance(prefitting_model, tf.keras.Model):
lattice_layer_name = '{}_{}'.format(LATTICE_LAYER_NAME, lattice_index)
weights = tf.keras.backend.get_value(
prefitting_model.get_layer(lattice_layer_name).weights[0])
else:
# We have already checked the types by this point, so if prefitting_model
# is not a keras Model it must be an Estimator.
lattice_kernel_variable_name = '{}_{}/{}'.format(
LATTICE_LAYER_NAME, lattice_index, lattice_layer.LATTICE_KERNEL_NAME)
weights = prefitting_model.get_variable_value(lattice_kernel_variable_name)
return weights
示例10: get_estimator
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Estimator [as 別名]
def get_estimator(working_dir, **hparams):
hparams = get_default_hyperparams(**hparams)
return tf.estimator.Estimator(
model_fn,
model_dir=working_dir,
params=hparams)
示例11: bootstrap
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Estimator [as 別名]
def bootstrap(working_dir, **hparams):
"""Initialize a tf.Estimator run with random initial weights.
Args:
working_dir: The directory where tf.estimator will drop logs,
checkpoints, and so on
hparams: hyperparams of the model.
"""
hparams = get_default_hyperparams(**hparams)
# a bit hacky - forge an initial checkpoint with the name that subsequent
# Estimator runs will expect to find.
#
# Estimator will do this automatically when you call train(), but calling
# train() requires data, and I didn't feel like creating training data in
# order to run the full train pipeline for 1 step.
estimator_initial_checkpoint_name = 'model.ckpt-1'
save_file = os.path.join(working_dir, estimator_initial_checkpoint_name)
sess = tf.Session(graph=tf.Graph())
with sess.graph.as_default():
features, labels = get_inference_input()
model_fn(features, labels, tf.estimator.ModeKeys.PREDICT, hparams)
sess.run(tf.global_variables_initializer())
tf.train.Saver().save(sess, save_file)
with open("./minigo.pbtxt", "w") as f:
f.write(str(sess.graph.as_graph_def()))
示例12: main
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Estimator [as 別名]
def main(unused_argv):
from official.transformer import transformer_main
tf.logging.set_verbosity(tf.logging.INFO)
if FLAGS.text is None and FLAGS.file is None:
tf.logging.warn("Nothing to translate. Make sure to call this script using "
"flags --text or --file.")
return
subtokenizer = tokenizer.Subtokenizer(FLAGS.vocab_file)
# Set up estimator and params
params = transformer_main.PARAMS_MAP[FLAGS.param_set]
params["beam_size"] = _BEAM_SIZE
params["alpha"] = _ALPHA
params["extra_decode_length"] = _EXTRA_DECODE_LENGTH
params["batch_size"] = _DECODE_BATCH_SIZE
estimator = tf.estimator.Estimator(
model_fn=transformer_main.model_fn, model_dir=FLAGS.model_dir,
params=params)
if FLAGS.text is not None:
tf.logging.info("Translating text: %s" % FLAGS.text)
translate_text(estimator, subtokenizer, FLAGS.text)
if FLAGS.file is not None:
input_file = os.path.abspath(FLAGS.file)
tf.logging.info("Translating file: %s" % input_file)
if not tf.gfile.Exists(FLAGS.file):
raise ValueError("File does not exist: %s" % input_file)
output_file = None
if FLAGS.file_out is not None:
output_file = os.path.abspath(FLAGS.file_out)
tf.logging.info("File output specified: %s" % output_file)
translate_file(estimator, subtokenizer, input_file, output_file)