本文整理匯總了Python中tensorflow.Dtype方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.Dtype方法的具體用法?Python tensorflow.Dtype怎麽用?Python tensorflow.Dtype使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.Dtype方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: maxout
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Dtype [as 別名]
def maxout(inputs, output_size, maxpart=2, use_bias=True, concat=True,
dtype=None, scope=None):
"""
Maxout layer
:param inputs: see the corresponding description of ``linear''
:param output_size: see the corresponding description of ``linear''
:param maxpart: an integer, the default value is 2
:param use_bias: a boolean value indicate whether to use bias term
:param concat: concat all tensors if inputs is a list of tensors
:param dtype: an optional instance of tf.Dtype
:param scope: the scope of this layer, the default value is ``maxout''
:returns: a Tensor with shape [batch, output_size]
:raises RuntimeError: see the corresponding description of ``linear''
"""
candidate = linear(inputs, output_size * maxpart, use_bias, concat,
dtype=dtype, scope=scope or "maxout")
shape = tf.concat([tf.shape(candidate)[:-1], [output_size, maxpart]],
axis=0)
value = tf.reshape(candidate, shape)
output = tf.reduce_max(value, -1)
return output
示例2: maxout_v2n
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Dtype [as 別名]
def maxout_v2n(inputs, output_size, maxpart, w, params, use_bias=True,
concat=True, dtype=None, scope=None):
"""
Maxout layer
:param inputs: see the corresponding description of ``linear''
:param output_size: see the corresponding description of ``linear''
:param maxpart: an integer, the default value is 2
:param use_bias: a boolean value indicate whether to use bias term
:param concat: concat all tensors if inputs is a list of tensors
:param dtype: an optional instance of tf.Dtype
:param scope: the scope of this layer, the default value is ``maxout''
:returns: a Tensor with shape [batch, output_size]
:raises RuntimeError: see the corresponding description of ``linear''
"""
w_x_dec, w_x_ctx = w
w_x_dec = tf.transpose(w_x_dec, [1, 2, 0, 3])
w_x_ctx = tf.transpose(w_x_ctx, [1, 2, 0, 3])
w_x_y = tf.zeros(tf.shape(w_x_dec), dtype=tf.float32)
candidate_linear = linear_v2n(inputs, output_size * maxpart, use_bias,
[w_x_y, w_x_dec, w_x_ctx], params, concat,
dtype=dtype, scope=scope or "maxout")
candidate = candidate_linear["output"]
_, w_x_dec_readout, w_x_ctx_readout = candidate_linear["weight_ratios"]
w_x_readout = w_x_dec_readout + w_x_ctx_readout
w_x_readout = tf.transpose(w_x_readout, [0, 2, 1, 3])
output_maxout = maxpool(candidate, output_size, params)
output = output_maxout["output"]
# direct
w_readout_maxout = output_maxout["weight_ratio"]
#propagate
propagater = tf.matmul
w_x_maxout = propagater(w_x_readout, w_readout_maxout)
weight_ratios = [w_x_maxout]
return {"output": output, "weight_ratios": weight_ratios}
示例3: __init__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Dtype [as 別名]
def __init__(self,
swap,
expiry_date=None,
dtype=None,
name=None):
"""Initialize a batch of European swaptions.
Args:
swap: An instance of `InterestRateSwap` specifying the interest rate
swaps underlying the swaptions. The batch size of the swaptions being
created would be the same as the batch size of the `swap`.
expiry_date: An optional rank 1 `DateTensor` specifying the expiry dates
for each swaption. The shape of the input should be the same as the
batch size of the `swap` input.
Default value: None in which case the option expity date is the same as
the start date of each underlying swap.
dtype: `tf.Dtype`. If supplied the dtype for the real variables or ops
either supplied to the Swaption object or created by the Swaption
object.
Default value: None which maps to the default dtype inferred by
TensorFlow.
name: Python str. The name to give to the ops created by this class.
Default value: `None` which maps to 'swaption'.
"""
self._name = name or 'swaption'
with tf.name_scope(self._name):
self._dtype = dtype
self._expiry_date = dates.convert_to_date_tensor(expiry_date)
self._swap = swap
示例4: __init__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Dtype [as 別名]
def __init__(self,
start_date,
end_date,
coupon_spec,
dtype=None,
name=None):
"""Initialize a batch of CMS cashflow streams.
Args:
start_date: A rank 1 `DateTensor` specifying the starting dates of the
accrual of the first coupon of the cashflow stream. The shape of the
input correspond to the numbercof streams being created.
end_date: A rank 1 `DateTensor` specifying the end dates for accrual of
the last coupon in each cashflow stream. The shape of the input should
be the same as that of `start_date`.
coupon_spec: A list of `CMSCouponSpecs` specifying the details of the
coupon payment for the cashflow stream. The length of the list should
be the same as the number of streams being created. Each coupon within
the list must have the same daycount_convention and businessday_rule.
dtype: `tf.Dtype`. If supplied the dtype for the real variables or ops
either supplied to the FloatingCashflowStream object or created by the
object.
Default value: None which maps to the default dtype inferred by
TensorFlow.
name: Python str. The name to give to the ops created by this class.
Default value: `None` which maps to 'floating_cashflow_stream'.
"""
super(CMSCashflowStream, self).__init__()
self._name = name or 'cms_cashflow_stream'
with tf.name_scope(self._name):
self._start_date = dates.convert_to_date_tensor(start_date)
self._end_date = dates.convert_to_date_tensor(end_date)
self._batch_size = self._start_date.shape[0]
self._first_coupon_date = None
self._penultimate_coupon_date = None
self._dtype = dtype
self._setup(coupon_spec)
示例5: check_operation_nodes
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Dtype [as 別名]
def check_operation_nodes(graph, name, node_type, dtype, shape, consumers):
"""Test a graph node parameters.
Args:
graph(tf): Graph object the node belongs to.
name(str): Name of the node.
node_type(str): Operation type of the node.
dtype(tf.Dtype): Dtype of the output tensor.
shape(tuple[int]): Shape of the output tensor.
consumers(list[str]): List of names of nodes consuming the node's output.
Returns:
None.
Raises:
AssertionError: If any check fail.
"""
operation = graph.get_operation_by_name(name)
assert len(operation.outputs) == 1
output = operation.outputs[0]
assert operation.type == node_type
assert output.dtype == dtype
assert output.shape.as_list() == shape
assert output.consumers() == [graph.get_operation_by_name(cons) for cons in consumers]
示例6: make_missing_neighbor_inputs
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Dtype [as 別名]
def make_missing_neighbor_inputs(neighbor_config,
inputs,
weight_dtype=tf.float32):
"""Makes additional inputs for neighbor features if necessary.
Args:
neighbor_config: An instance of `configs.GraphNeighborConfig` specifying the
number of neighbors and how neighbor features should be named.
inputs: Dictionary of input tensors that may be missing neighbor features.
The keys are the features names. See `utils.unpack_neighbor_features` for
expected names of neighbor features and weights.
weight_dtype: `tf.Dtype` for neighbors weights. Defaults to `tf.float32`.
Returns:
A dictionary of neighbor feature and weight tensors that do not already
exist in `inputs`. The keys are specified according to `neighbor_config`.
"""
existing_feature_names = set(inputs.keys())
neighbor_inputs = {}
for i in range(neighbor_config.max_neighbors): # For each potential neighbor.
# Weight of the neighbor.
weight_name = '{}{}{}'.format(neighbor_config.prefix, i,
neighbor_config.weight_suffix)
if weight_name not in existing_feature_names:
neighbor_inputs[weight_name] = tf.keras.Input((1,),
dtype=weight_dtype,
name=weight_name)
# For inputs without existing neighbor features, replicate them.
for feature_name, tensor in inputs.items():
if feature_name.startswith(neighbor_config.prefix):
continue
neighbor_feature_name = '{}{}_{}'.format(neighbor_config.prefix, i,
feature_name)
if neighbor_feature_name not in existing_feature_names:
neighbor_inputs[neighbor_feature_name] = tf.keras.Input(
tensor.shape[1:],
batch_size=tensor.shape[0],
dtype=tensor.dtype,
name=neighbor_feature_name,
ragged=isinstance(tensor, tf.RaggedTensor),
sparse=isinstance(tensor, tf.sparse.SparseTensor))
return neighbor_inputs
示例7: __init__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Dtype [as 別名]
def __init__(self,
start_date,
maturity_date,
pay_leg,
receive_leg,
holiday_calendar=None,
dtype=None,
name=None):
"""Initialize a batch of IRS contracts.
Args:
start_date: A rank 1 `DateTensor` specifying the dates for the inception
(start of the accrual) of the swap contracts. The shape of the input
correspond to the number of instruments being created.
maturity_date: A rank 1 `DateTensor` specifying the maturity dates for
each contract. The shape of the input should be the same as that of
`start_date`.
pay_leg: A scalar or a list of either `FixedCouponSpecs` or
`FloatCouponSpecs` specifying the coupon payments for the payment leg
of the swap. If specified as a list then the length of the list should
be the same as the number of instruments being created. If specified as
a scalar, then the elements of the namedtuple must be of the same shape
as (or compatible to) the shape of `start_date`.
receive_leg: A scalar or a list of either `FixedCouponSpecs` or
`FloatCouponSpecs` specifying the coupon payments for the receiving leg
of the swap. If specified as a list then the length of the list should
be the same as the number of instruments being created. If specified as
a scalar, then the elements of the namedtuple must be of the same shape
as (or compatible with) the shape of `start_date`.
holiday_calendar: An instance of `dates.HolidayCalendar` to specify
weekends and holidays.
Default value: None in which case a holiday calendar would be created
with Saturday and Sunday being the holidays.
dtype: `tf.Dtype`. If supplied the dtype for the real variables or ops
either supplied to the IRS object or created by the IRS object.
Default value: None which maps to the default dtype inferred by
TensorFlow.
name: Python str. The name to give to the ops created by this class.
Default value: `None` which maps to 'interest_rate_swap'.
"""
self._name = name or 'interest_rate_swap'
if holiday_calendar is None:
holiday_calendar = dates.create_holiday_calendar(
weekend_mask=dates.WeekendMask.SATURDAY_SUNDAY)
with tf.name_scope(self._name):
self._dtype = dtype
self._start_date = dates.convert_to_date_tensor(start_date)
self._maturity_date = dates.convert_to_date_tensor(maturity_date)
self._holiday_calendar = holiday_calendar
self._floating_leg = None
self._fixed_leg = None
self._pay_leg = self._setup_leg(pay_leg)
self._receive_leg = self._setup_leg(receive_leg)
self._is_payer = isinstance(self._pay_leg, cs.FixedCashflowStream)
示例8: __init__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Dtype [as 別名]
def __init__(self,
settlement_date,
maturity_date,
coupon_spec,
start_date=None,
first_coupon_date=None,
penultimate_coupon_date=None,
holiday_calendar=None,
dtype=None,
name=None):
"""Initialize a batch of fixed coupon bonds.
Args:
settlement_date: A rank 1 `DateTensor` specifying the settlement date of
the bonds.
maturity_date: A rank 1 `DateTensor` specifying the maturity dates of the
bonds. The shape of the input should be the same as that of
`settlement_date`.
coupon_spec: A list of `FixedCouponSpecs` specifying the coupon payments.
The length of the list should be the same as the number of bonds
being created.
start_date: An optional `DateTensor` specifying the dates when the
interest starts to accrue for the coupons. The input can be used to
specify a forward start date for the coupons. The shape of the input
correspond to the numbercof instruments being created.
Default value: None in which case the coupons start to accrue from the
`settlement_date`.
first_coupon_date: An optional rank 1 `DateTensor` specifying the dates
when first coupon will be paid for bonds with irregular first coupon.
penultimate_coupon_date: An optional rank 1 `DateTensor` specifying the
dates when the penultimate coupon (or last regular coupon) will be paid
for bonds with irregular last coupon.
holiday_calendar: An instance of `dates.HolidayCalendar` to specify
weekends and holidays.
Default value: None in which case a holiday calendar would be created
with Saturday and Sunday being the holidays.
dtype: `tf.Dtype`. If supplied the dtype for the real variables or ops
either supplied to the bond object or created by the bond object.
Default value: None which maps to the default dtype inferred by
TensorFlow.
name: Python str. The name to give to the ops created by this class.
Default value: `None` which maps to 'bond'.
"""
self._name = name or 'bond'
if holiday_calendar is None:
holiday_calendar = dates.create_holiday_calendar(
weekend_mask=dates.WeekendMask.SATURDAY_SUNDAY)
with tf.name_scope(self._name):
self._dtype = dtype
self._settlement_date = dates.convert_to_date_tensor(settlement_date)
self._maturity_date = dates.convert_to_date_tensor(maturity_date)
self._holiday_calendar = holiday_calendar
self._setup(coupon_spec, start_date, first_coupon_date,
penultimate_coupon_date)
示例9: convert_to_type
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Dtype [as 別名]
def convert_to_type(type_like):
"""Converts `type_like` to a `Type`.
If `type_like` is already a `Type`, it is returned. The following
conversions are performed:
* Python tuples become `Tuple`s; items are recursively converted.
* A `tf.TensorShape` becomes a corresponding `TensorType` with
`dtype=float32`. Must be fully defined.
* Lists of `shape + [dtype]` (e.g. `[3, 4, 'int32']`) become
`TensorType`s, with the default `dtype=float32` if omitted.
* A `tf.Dtype` or stringified version thereof (e.g. `'int64'`)
becomes a corresponding scalar `TensorType((), dtype)`.
* An integer `vector_len` becomes a corresponding vector
`TensorType((vector_len,), dtype=float32)`.
Args:
type_like: Described above.
Returns:
A `Type`.
Raises:
TypeError: If `type_like` cannot be converted to a `Type`.
"""
if isinstance(type_like, ResultType):
return type_like
if isinstance(type_like, tf.TensorShape):
# Check this *before* calling as_list() otherwise it throws.
if not type_like.is_fully_defined():
raise TypeError('shape %s is not fully defined' % type_like)
return TensorType(type_like.as_list())
if isinstance(type_like, tuple):
return TupleType(convert_to_type(item) for item in type_like)
if isinstance(type_like, list):
if type_like and isinstance(type_like[-1], six.string_types):
return TensorType(type_like[:-1], dtype=type_like[-1])
else:
return TensorType(type_like)
if isinstance(type_like, tf.DType) or isinstance(type_like, six.string_types):
return TensorType((), dtype=type_like)
if isinstance(type_like, numbers.Integral):
return TensorType((type_like,))
raise TypeError('Cannot covert %s to a type.' % (type_like,))