本文整理匯總了Python中tensorflow.Dataset方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.Dataset方法的具體用法?Python tensorflow.Dataset怎麽用?Python tensorflow.Dataset使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.Dataset方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: transform
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Dataset [as 別名]
def transform(self, fn, **args):
"""Construct a new dataset by applying a transformation to every sample in this dataset.
The argument is a function that can be called as follows:
>> newx, newy, neww = fn(x, y, w)
It might be called only once with the whole dataset, or multiple
times with different subsets of the data. Each time it is called,
it should transform the samples and return the transformed data.
Parameters
----------
fn: function
A function to apply to each sample in the dataset
Returns
-------
a newly constructed Dataset object
"""
raise NotImplementedError()
示例2: make_pytorch_dataset
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Dataset [as 別名]
def make_pytorch_dataset(self, epochs=1, deterministic=False):
"""Create a torch.utils.data.IterableDataset that iterates over the data in this Dataset.
Each value returned by the Dataset's iterator is a tuple of (X, y,
w, id) for one sample.
Parameters
----------
epochs: int
the number of times to iterate over the Dataset
deterministic: bool
if True, the data is produced in order. If False, a different
random permutation of the data is used for each epoch.
Returns
-------
`torch.utils.data.IterableDataset` that iterates over the data in
this dataset.
"""
raise NotImplementedError()
示例3: dataset_to_stream
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Dataset [as 別名]
def dataset_to_stream(dataset, input_name, n_chunks=0, append_targets=False):
"""Takes a tf.Dataset and creates a numpy stream of ready batches."""
for example in backend.dataset_as_numpy(dataset):
inp, out = example[0][input_name], example[1]
# Some accelerators don't handle uint8 well, cast to int.
if isinstance(inp, np.uint8):
inp = inp.astype(np.int32)
if isinstance(out, np.uint8):
out = out.astype(np.int32)
if len(out.shape) > 1 and out.shape[-1] == 1:
out = np.squeeze(out, axis=-1)
if n_chunks > 0:
inp = tuple(np.split(inp, n_chunks, axis=1))
out = tuple(np.split(out, n_chunks, axis=1))
if append_targets:
inp = (inp, out)
yield inp, out
示例4: __dataset_generator
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Dataset [as 別名]
def __dataset_generator(self, hops, scale_terms):
"""
Generates a set of triplets and associated scaling terms by:
1. Sampling for each node a set of nodes from each of its neighborhoods
2. Forming all implied pairwise constraints
Uses tf.Dataset API to perform the sampling in a separate thread for increased speed.
Parameters
----------
hops : dict
A dictionary where each 1, 2, ... K, neighborhoods are saved as sparse matrices
scale_terms : dict
The appropriate up-scaling terms to ensure unbiased estimates for each neighbourhood
Returns
-------
"""
def gen():
while True:
yield to_triplets(sample_all_hops(hops), scale_terms)
dataset = tf.data.Dataset.from_generator(gen, (tf.int32, tf.float32), ([None, 3], [None]))
self.triplets, self.scale_terms = dataset.prefetch(1).make_one_shot_iterator().get_next()
示例5: test_with_tf_datasets
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Dataset [as 別名]
def test_with_tf_datasets(self):
@computations.tf_computation(computation_types.SequenceType(tf.int64))
def consume(ds):
return ds.reduce(np.int64(0), lambda x, y: x + y)
self.assertEqual(str(consume.type_signature), '(int64* -> int64)')
@computations.tf_computation
def produce():
return tf.data.Dataset.range(10)
self.assertEqual(str(produce.type_signature), '( -> int64*)')
self.assertEqual(consume(produce()), 45)
# TODO(b/131363314): The reference executor should support generating and
# returning infinite datasets
示例6: __init__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Dataset [as 別名]
def __init__(self, model_creator, data_creator, config=None,
verbose=False):
"""Initializes the runner.
Args:
model_creator (dict -> Model): see tf_trainer.py.
data_creator (dict -> tf.Dataset, tf.Dataset): see tf_trainer.py.
config (dict): see tf_trainer.py.
verbose (bool): Outputs training data if true.
"""
self.model_creator = model_creator
self.data_creator = data_creator
self.config = {} if config is None else config
self.epoch = 0
self.verbose = verbose
示例7: to_dataframe
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Dataset [as 別名]
def to_dataframe(self):
"""Construct a pandas DataFrame containing the data from this Dataset.
Returns
-------
pandas dataframe. If there is only a single feature per datapoint,
will have column "X" else will have columns "X1,X2,..." for
features. If there is only a single label per datapoint, will
have column "y" else will have columns "y1,y2,..." for labels. If
there is only a single weight per datapoint will have column "w"
else will have columns "w1,w2,...". Will have column "ids" for
identifiers.
"""
X = self.X
y = self.y
w = self.w
ids = self.ids
if len(X.shape) == 1 or X.shape[1] == 1:
columns = ['X']
else:
columns = [f'X{i+1}' for i in range(X.shape[1])]
X_df = pd.DataFrame(X, columns=columns)
if len(y.shape) == 1 or y.shape[1] == 1:
columns = ['y']
else:
columns = [f'y{i+1}' for i in range(y.shape[1])]
y_df = pd.DataFrame(y, columns=columns)
if len(w.shape) == 1 or w.shape[1] == 1:
columns = ['w']
else:
columns = [f'w{i+1}' for i in range(w.shape[1])]
w_df = pd.DataFrame(w, columns=columns)
ids_df = pd.DataFrame(ids, columns=['ids'])
return pd.concat([X_df, y_df, w_df, ids_df], axis=1, sort=False)
示例8: __init__
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Dataset [as 別名]
def __init__(self, datasets=None):
"""Initialize this `Databag`.
Parameters
----------
datasets: dict, optional
A dictionary mapping keys to `Dataset` objects.
"""
if datasets is None:
self.datasets = dict()
else:
self.datasets = datasets
示例9: test_unknown_shapes
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Dataset [as 別名]
def test_unknown_shapes():
"""Apply _check_interpolation_correctness() for a few sizes and check
for tf.Dataset compatibility."""
shapes_to_try = [[3, 4, 5, 6], [1, 2, 2, 1]]
for shape in shapes_to_try:
_check_interpolation_correctness(shape, "float32", "float32", True)
示例10: build_client_update_fn
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Dataset [as 別名]
def build_client_update_fn(model_fn, optimizer_fn, client_update_tf,
tf_dataset_type, model_weights_type):
"""Builds a `tff.tf_computation` in the presense of malicious clients.
Args:
model_fn: A no-arg function that returns a `tff.learning.Model`.
optimizer_fn: A no-arg function that returns a
`tf.keras.optimizers.Optimizer`.
client_update_tf: A 'tf.function' that computes the ClientOutput
tf_dataset_type: type_signature of dataset.
model_weights_type: type_signature of model weights.
Returns:
A `tff.tf_computation` for local model optimization with type signature:
'@tff.tf_computation(tf_dataset_type, tf_dataset_type,
tf.bool, model_weights_type)'
"""
@tff.tf_computation(tf_dataset_type, tf_dataset_type, tf.bool,
model_weights_type)
def client_delta_tf(benign_dataset, malicious_dataset, client_type,
initial_model_weights):
"""Performs client local model optimization.
Args:
benign_dataset: A 'tf.data.Dataset' consisting of benign dataset
malicious_dataset: A 'tf.data.Dataset' consisting of malicious dataset
client_type: A 'tf.bool' indicating whether the client is malicious
initial_model_weights: A `tff.learning.Model.weights` from server.
Returns:
A 'ClientOutput`.
"""
# Create variables here in the graph context, before calling the tf.function
# below.
model = model_fn()
optimizer = optimizer_fn()
return client_update_tf(model, optimizer, benign_dataset, malicious_dataset,
client_type, initial_model_weights)
return client_delta_tf
示例11: build_client_update_fn
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Dataset [as 別名]
def build_client_update_fn(model_fn, client_optimizer_fn, tf_dataset_type,
model_weights_type):
"""Builds a `tff.tf_computation` for local model optimization.
Args:
model_fn: A no-arg function that returns a `tff.learning.TrainableModel`.
client_optimizer_fn: A no-arg function that returns a
`tf.keras.optimizers.Optimizer`.
tf_dataset_type: type_signature of dataset.
model_weights_type: type_signature of model weights.
Returns:
A `tff.tf_computation` for local model optimization.
"""
@tff.tf_computation(tf_dataset_type, model_weights_type)
def client_delta_tf(tf_dataset, initial_model_weights):
"""Performs client local model optimization.
Args:
tf_dataset: a `tf.data.Dataset` that provides training examples.
initial_model_weights: a `model_utils.ModelWeights` containing the
starting weights.
Returns:
A `ClientOutput`.
"""
model = model_fn()
optimizer = client_optimizer_fn()
return client_update(model, optimizer, tf_dataset, initial_model_weights)
return client_delta_tf
示例12: test_get_size_info
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Dataset [as 別名]
def test_get_size_info(self, num_clients):
@computations.federated_computation(
type_factory.at_clients(computation_types.SequenceType(tf.float32)),
type_factory.at_server(tf.float32))
def comp(temperatures, threshold):
client_data = [temperatures, intrinsics.federated_broadcast(threshold)]
result_map = intrinsics.federated_map(
count_over, intrinsics.federated_zip(client_data))
count_map = intrinsics.federated_map(count_total, temperatures)
return intrinsics.federated_mean(result_map, count_map)
factory = executor_stacks.sizing_executor_factory(num_clients=num_clients)
default_executor.set_default_executor(factory)
to_float = lambda x: tf.cast(x, tf.float32)
temperatures = [tf.data.Dataset.range(10).map(to_float)] * num_clients
threshold = 15.0
comp(temperatures, threshold)
# Each client receives a tf.float32 and uploads two tf.float32 values.
expected_broadcast_bits = num_clients * 32
expected_aggregate_bits = expected_broadcast_bits * 2
expected = ({
(('CLIENTS', num_clients),): [[1, tf.float32]] * num_clients
}, {
(('CLIENTS', num_clients),): [[1, tf.float32]] * num_clients * 2
}, [expected_broadcast_bits], [expected_aggregate_bits])
self.assertEqual(expected, factory.get_size_info())
示例13: test_consume_infinite_tf_dataset
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Dataset [as 別名]
def test_consume_infinite_tf_dataset(self):
@computations.tf_computation(computation_types.SequenceType(tf.int64))
def consume(ds):
# Consume the first 10 elements of the dataset.
return ds.take(10).reduce(np.int64(0), lambda x, y: x + y)
self.assertEqual(consume(tf.data.Dataset.range(10).repeat()), 45)
# TODO(b/131363314): The reference executor should support generating and
# returning infinite datasets
示例14: test_produce_and_consume_infinite_tf_dataset
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Dataset [as 別名]
def test_produce_and_consume_infinite_tf_dataset(self):
@computations.tf_computation(computation_types.SequenceType(tf.int64))
def consume(ds):
# Consume the first 10 elements of the dataset.
return ds.take(10).reduce(np.int64(0), lambda x, y: x + y)
@computations.tf_computation
def produce():
# Produce an infinite dataset.
return tf.data.Dataset.range(10).repeat()
self.assertEqual(consume(produce()), 45)
示例15: test_with_sequence_of_pairs
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import Dataset [as 別名]
def test_with_sequence_of_pairs(self):
pairs = tf.data.Dataset.from_tensor_slices(
(list(range(5)), list(range(5, 10))))
@computations.tf_computation
def process_pairs(ds):
return ds.reduce(0, lambda state, pair: state + pair[0] + pair[1])
self.assertEqual(process_pairs(pairs), 45)