當前位置: 首頁>>代碼示例>>Python>>正文


Python tensorflow.ConfigProto方法代碼示例

本文整理匯總了Python中tensorflow.ConfigProto方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.ConfigProto方法的具體用法?Python tensorflow.ConfigProto怎麽用?Python tensorflow.ConfigProto使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow的用法示例。


在下文中一共展示了tensorflow.ConfigProto方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: create_session

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ConfigProto [as 別名]
def create_session(config_dict=dict(), force_as_default=False):
    config = tf.ConfigProto()
    for key, value in config_dict.items():
        fields = key.split('.')
        obj = config
        for field in fields[:-1]:
            obj = getattr(obj, field)
        setattr(obj, fields[-1], value)
    session = tf.Session(config=config)
    if force_as_default:
        session._default_session = session.as_default()
        session._default_session.enforce_nesting = False
        session._default_session.__enter__()
    return session

#----------------------------------------------------------------------------
# Initialize all tf.Variables that have not already been initialized.
# Equivalent to the following, but more efficient and does not bloat the tf graph:
#   tf.variables_initializer(tf.report_unitialized_variables()).run() 
開發者ID:zalandoresearch,項目名稱:disentangling_conditional_gans,代碼行數:21,代碼來源:tfutil.py

示例2: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ConfigProto [as 別名]
def __init__(self):

        self.session = tf.Session(config=tf.ConfigProto(allow_soft_placement=True,log_device_placement=False))
        self.actor = networks.Actor_MLP(scope="actor1",units=[settings.S_DIM,100,settings.A_DIM],activations=[None,'relu','tanh'],trainable=True)
        self.old_actor = networks.Actor_MLP(scope="actor0",units=[settings.S_DIM,100,settings.A_DIM],activations=[None,'relu','tanh'],trainable=False)
        self.critic =  networks.Critic_MLP(scope="critic1",units=[settings.S_DIM,100,1],activations=[None,'relu',None],trainable=True)

        self.state_tf = tf.placeholder(dtype=tf.float32,shape=[None,settings.S_DIM])
        self.action_tf = tf.placeholder(dtype=tf.float32,shape=[None,settings.A_DIM])
        self.return_tf = tf.placeholder(dtype=tf.float32,shape=[None,1]) 
        self.adv_tf = tf.placeholder(dtype=tf.float32,shape=[None,1]) 
        
        # global steps to keep track of training
        self.actor_step = tf.get_variable('actor_global_step', [], initializer=tf.constant_initializer(0), trainable=False)
        self.critic_step = tf.get_variable('critic_global_step', [], initializer=tf.constant_initializer(0), trainable=False)

        # build computation graphs
        self.actor.build_graph(self.state_tf,self.actor_step) 
        self.old_actor.build_graph(self.state_tf,0)
        self.critic.build_graph(self.state_tf,self.critic_step)
        self.build_graph() 
開發者ID:utra-robosoccer,項目名稱:soccer-matlab,代碼行數:23,代碼來源:agents.py

示例3: _setup_graph

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ConfigProto [as 別名]
def _setup_graph(self):
        """
        Sets up the tensorflow computation graph for training, prediction, and action selection

        The variables returned will be set as class attributes (see __init__)
        """
        tf_config = tf.ConfigProto()
        tf_config.gpu_options.allow_growth = True
        sess = tf.Session(config=tf_config)

        ### PROBLEM 1
        ### YOUR CODE HERE
        state_ph, action_ph, next_state_ph = self._setup_placeholders()
        next_state_pred = self._dynamics_func(state_ph, action_ph, False)
        loss, optimizer = self._setup_training(state_ph, next_state_ph, next_state_pred)
        ### PROBLEM 2
        ### YOUR CODE HERE
        best_action = self._setup_action_selection(state_ph)

        sess.run(tf.global_variables_initializer())

        return sess, state_ph, action_ph, next_state_ph, \
                next_state_pred, loss, optimizer, best_action 
開發者ID:xuwd11,項目名稱:cs294-112_hws,代碼行數:25,代碼來源:model_based_policy.py

示例4: train

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ConfigProto [as 別名]
def train(env_id, num_timesteps, seed):
    env = make_mujoco_env(env_id, seed)

    with tf.Session(config=tf.ConfigProto()):
        ob_dim = env.observation_space.shape[0]
        ac_dim = env.action_space.shape[0]
        with tf.variable_scope("vf"):
            vf = NeuralNetValueFunction(ob_dim, ac_dim)
        with tf.variable_scope("pi"):
            policy = GaussianMlpPolicy(ob_dim, ac_dim)

        learn(env, policy=policy, vf=vf,
            gamma=0.99, lam=0.97, timesteps_per_batch=2500,
            desired_kl=0.002,
            num_timesteps=num_timesteps, animate=False)

        env.close() 
開發者ID:Hwhitetooth,項目名稱:lirpg,代碼行數:19,代碼來源:run_mujoco.py

示例5: train

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ConfigProto [as 別名]
def train(env_id, num_timesteps, seed, policy):

    ncpu = multiprocessing.cpu_count()
    if sys.platform == 'darwin': ncpu //= 2
    config = tf.ConfigProto(allow_soft_placement=True,
                            intra_op_parallelism_threads=ncpu,
                            inter_op_parallelism_threads=ncpu)
    config.gpu_options.allow_growth = True #pylint: disable=E1101
    tf.Session(config=config).__enter__()

    env = VecFrameStack(make_atari_env(env_id, 8, seed), 4)
    policy = {'cnn' : CnnPolicy, 'lstm' : LstmPolicy, 'lnlstm' : LnLstmPolicy}[policy]
    ppo2.learn(policy=policy, env=env, nsteps=128, nminibatches=4,
        lam=0.95, gamma=0.99, noptepochs=4, log_interval=1,
        ent_coef=.01,
        lr=lambda f : f * 2.5e-4,
        cliprange=lambda f : f * 0.1,
        total_timesteps=int(num_timesteps * 1.1)) 
開發者ID:Hwhitetooth,項目名稱:lirpg,代碼行數:20,代碼來源:run_atari.py

示例6: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ConfigProto [as 別名]
def __init__(self, train_df, word_count, batch_size, epochs):
        tf.set_random_seed(4)
        session_conf = tf.ConfigProto(intra_op_parallelism_threads=2, inter_op_parallelism_threads=8)
        backend.set_session(tf.Session(graph=tf.get_default_graph(), config=session_conf))

        self.batch_size = batch_size
        self.epochs = epochs

        self.max_name_seq = 10
        self.max_item_desc_seq = 75
        self.max_text = word_count + 1
        self.max_brand = np.max(train_df.brand_name.max()) + 1
        self.max_condition = np.max(train_df.item_condition_id.max()) + 1
        self.max_subcat0 = np.max(train_df.subcat_0.max()) + 1
        self.max_subcat1 = np.max(train_df.subcat_1.max()) + 1
        self.max_subcat2 = np.max(train_df.subcat_2.max()) + 1 
開發者ID:aerdem4,項目名稱:mercari-price-suggestion,代碼行數:18,代碼來源:nn_model.py

示例7: predictor

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ConfigProto [as 別名]
def predictor(q, gpu, pq):
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    sess = tf.Session(config=config)
    with sess.as_default():
        model = create_model(gpu)
        while True:
            batch_fnames, x_batch = q.get()
            if x_batch is None:
                break

            preds = model.predict_on_batch(x_batch)

            for i, pred in enumerate(preds):
                filename = batch_fnames[i]
                pq.put((os.path.join(ensembling_dir, filename[:-4] + ".png"), pred)) 
開發者ID:killthekitten,項目名稱:kaggle-carvana-2017,代碼行數:18,代碼來源:ensemble_gpu.py

示例8: predictor

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ConfigProto [as 別名]
def predictor(q, gpu):
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    sess = tf.Session(config=config)
    with sess.as_default():
        model = create_model(gpu)
        while True:
            batch_fnames, x_batch = q.get()
            if x_batch is None:
                break

            preds = model.predict_on_batch(x_batch)

            if args.pred_tta:
                preds = undo_tta(preds, args.pred_tta)

            for i, pred in enumerate(preds):
                filename = batch_fnames[i]
                prediction = pred[:, 1:-1, :]
                array_to_img(prediction * 255).save(os.path.join(output_dir, filename.split('/')[-1][:-4] + ".png")) 
開發者ID:killthekitten,項目名稱:kaggle-carvana-2017,代碼行數:22,代碼來源:predict_multithreaded.py

示例9: chpt_to_dict_arrays_simple

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ConfigProto [as 別名]
def chpt_to_dict_arrays_simple(file_name):
    """
        Convert a checkpoint into into a dictionary of numpy arrays 
        for later use in TensorRT NMT sample.
    """
    config = tf.ConfigProto(allow_soft_placement=True)
    sess = tf.Session(config=config)

    saver = tf.train.import_meta_graph(file_name)
    dir_name = os.path.dirname(os.path.abspath(file_name))
    saver.restore(sess, tf.train.latest_checkpoint(dir_name))

    params = {}
    print ('\nFound the following trainable variables:')
    with sess.as_default():
        variables = tf.trainable_variables()
        for v in variables:
            params[v.name] = v.eval(session=sess)
            print ("{0}    {1}".format(v.name, params[v.name].shape))

    #use default value
    params["forget_bias"] = 1.0
    return params 
開發者ID:aimuch,項目名稱:iAI,代碼行數:25,代碼來源:chptToBin.py

示例10: test_update

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ConfigProto [as 別名]
def test_update():
    os.environ["CUDA_VISIBLE_DEVICES"] = '0'
    _config = tf.ConfigProto()
    _config.gpu_options.allow_growth = True
    _config.allow_soft_placement = True
    start_time = time.time()
    mdbt = MDBTTracker()
    print('\tMDBT: model build time: {:.2f} seconds'.format(time.time() - start_time))
    saver = tf.train.Saver()
    mdbt.restore_model(mdbt.sess, saver)
    # demo state history
    mdbt.state['history'] = [['null', 'I\'m trying to find an expensive restaurant in the centre part of town.'],
                             [
                                 'The Cambridge Chop House is an good expensive restaurant in the centre of town. Would you like me to book it for you?',
                                 'Yes, a table for 1 at 16:15 on sunday.  I need the reference number.']]
    new_state = mdbt.update(None, 'hi, this is not good')
    print(json.dumps(new_state, indent=4))
    print('all time: {:.2f} seconds'.format(time.time() - start_time)) 
開發者ID:ConvLab,項目名稱:ConvLab,代碼行數:20,代碼來源:mdbt.py

示例11: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ConfigProto [as 別名]
def __init__(self, path: str = None, use_gpu=False):

        import tensorflow as tf
        from keras.models import Sequential
        from keras.layers import Dense
        from keras.backend import set_session

        self.model = Sequential()
        self.model.add(Dense(AOLReactionFeatureAnalyzer.NUM_FEATURES, activation='relu',
                             input_dim=AOLReactionFeatureAnalyzer.NUM_FEATURES))
        self.model.add(Dense(AOLReactionFeatureAnalyzer.NUM_FEATURES - 2, activation='relu'))
        self.model.add(Dense(1, activation='sigmoid'))
        self.model.compile(optimizer='rmsprop',
                           loss='binary_crossentropy',
                           metrics=['accuracy'])

        if use_gpu:
            config = tf.ConfigProto()
            config.gpu_options.allow_growth = True
            set_session(tf.Session(config=config)) 
開發者ID:csvance,項目名稱:armchair-expert,代碼行數:22,代碼來源:reaction.py

示例12: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ConfigProto [as 別名]
def __init__(self, use_gpu: bool = False):
        import tensorflow as tf
        from keras.models import Sequential
        from keras.layers import Dense, Embedding
        from keras.layers import LSTM
        from keras.backend import set_session

        latent_dim = StructureModel.SEQUENCE_LENGTH * 8

        model = Sequential()
        model.add(
            Embedding(StructureFeatureAnalyzer.NUM_FEATURES, StructureFeatureAnalyzer.NUM_FEATURES,
                      input_length=StructureModel.SEQUENCE_LENGTH))
        model.add(LSTM(latent_dim, dropout=0.2, return_sequences=False))
        model.add(Dense(StructureFeatureAnalyzer.NUM_FEATURES, activation='softmax'))
        model.summary()
        model.compile(loss='sparse_categorical_crossentropy', optimizer='adam')
        self.model = model

        if use_gpu:
            config = tf.ConfigProto()
            config.gpu_options.allow_growth = True
            set_session(tf.Session(config=config)) 
開發者ID:csvance,項目名稱:armchair-expert,代碼行數:25,代碼來源:structure.py

示例13: train

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ConfigProto [as 別名]
def train(self):
		# Construct model
		model = Transformer()
		print("Graph loaded")
		init = tf.global_variables_initializer()

		config = tf.ConfigProto()
		config.gpu_options.allow_growth = True

		# Start training
		sv = tf.train.Supervisor(logdir=pm.logdir, save_model_secs=0, init_op=init)
		saver = sv.saver
		with sv.managed_session(config=config) as sess:
			for epoch in range(1, pm.num_epochs + 1):
				if sv.should_stop():
					break
				for _ in tqdm(range(model.num_batch), total=model.num_batch, ncols=70, leave=False, unit='b'):
					sess.run(model.optimizer)

				gs = sess.run(model.global_step)
				saver.save(sess, pm.logdir + '/model_epoch_{}_global_step_{}'.format(epoch, gs))

		print("MSG : Done for training!") 
開發者ID:EternalFeather,項目名稱:Generative-adversarial-Nets-in-NLP,代碼行數:25,代碼來源:interface.py

示例14: __init__

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ConfigProto [as 別名]
def __init__(self, checkpoint, pca_params, input_tensor_name, output_tensor_name):
        """Create a new Graph and a new Session for every VGGishExtractor object."""
        super(VGGishExtractor, self).__init__()
        
        self.graph = tf.Graph()
        with self.graph.as_default():
            vggish_slim.define_vggish_slim(training=False)

        sess_config = tf.ConfigProto(allow_soft_placement=True)
        sess_config.gpu_options.allow_growth = True
        self.sess = tf.Session(graph=self.graph, config=sess_config)
        vggish_slim.load_defined_vggish_slim_checkpoint(self.sess, checkpoint)
        
        # use the self.sess to init others
        self.input_tensor = self.graph.get_tensor_by_name(input_tensor_name)
        self.output_tensor = self.graph.get_tensor_by_name(output_tensor_name)

        # postprocessor
        self.postprocess = vggish_postprocess.Postprocessor(pca_params) 
開發者ID:luuil,項目名稱:Tensorflow-Audio-Classification,代碼行數:21,代碼來源:audio_feature_extractor.py

示例15: make_app

# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ConfigProto [as 別名]
def make_app(model_dir):
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    config.gpu_options.per_process_gpu_memory_fraction = 1.0
    config.allow_soft_placement = True
    config.log_device_placement = True
    sess = tf.Session(config=config)
    tagger = Tagger(sess=sess, model_dir=model_dir, scope=TASK.scope, batch_size=200)
    return tornado.web.Application([
        (r"/", MainHandler),
        (r"/%s" % TASK.scope, TaskHandler, {'tagger': tagger})
    ]) 
開發者ID:chqiwang,項目名稱:convseg,代碼行數:14,代碼來源:server.py


注:本文中的tensorflow.ConfigProto方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。