本文整理匯總了Python中tensorflow.ConditionalAccumulator方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorflow.ConditionalAccumulator方法的具體用法?Python tensorflow.ConditionalAccumulator怎麽用?Python tensorflow.ConditionalAccumulator使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow
的用法示例。
在下文中一共展示了tensorflow.ConditionalAccumulator方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: testConstructorWithShape
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ConditionalAccumulator [as 別名]
def testConstructorWithShape(self):
with tf.Graph().as_default():
q = tf.ConditionalAccumulator(
tf.float32, name="Q", shape=tf.TensorShape([1, 5, 2, 8]))
self.assertTrue(isinstance(q.accumulator_ref, tf.Tensor))
self.assertEquals(tf.string_ref, q.accumulator_ref.dtype)
self.assertProtoEquals("""
name:'Q' op:'ConditionalAccumulator'
attr { key: 'dtype' value { type: DT_FLOAT } }
attr { key: 'shape' value { shape { dim {size: 1 }
dim {size: 5 }
dim {size: 2 }
dim {size: 8 }
} } }
attr { key: 'container' value { s: '' } }
attr { key: 'shared_name' value { s: '' } }
""", q.accumulator_ref.op.node_def)
示例2: testAccumulatorMultipleAccumulators
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ConditionalAccumulator [as 別名]
def testAccumulatorMultipleAccumulators(self):
with self.test_session():
q_f32_0 = tf.ConditionalAccumulator(
tf.float32, name="Q", shape=tf.TensorShape([1]))
q_f32_1 = tf.ConditionalAccumulator(
tf.float32, name="Q", shape=tf.TensorShape([1]))
q_f16_0 = tf.ConditionalAccumulator(
tf.float16, name="Q", shape=tf.TensorShape([1]))
q_f16_1 = tf.ConditionalAccumulator(
tf.float16, name="Q", shape=tf.TensorShape([1]))
accums = [q_f16_0, q_f16_1, q_f32_0, q_f32_1]
for i in range(len(accums)):
accums[i].apply_grad((i + 10.0,)).run()
for i in range(len(accums)):
result = accums[i].take_grad(1).eval()
self.assertEqual(result, i + 10.0)
示例3: testAccumulatorApplyAndTakeGradWithShape
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ConditionalAccumulator [as 別名]
def testAccumulatorApplyAndTakeGradWithShape(self):
with self.test_session():
q = tf.ConditionalAccumulator(tf.float32, name="Q", shape=(3, 2))
elems = [[[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]],
[[10.0, 20.0], [30.0, 40.0], [50.0, 60.0]]]
elems_ave = [[(a + b) / len(elems) for a, b in zip(x, y)]
for x, y in zip(elems[0], elems[1])]
accum_ops = [q.apply_grad(x) for x in elems]
takeg_t = q.take_grad(1)
for accum_op in accum_ops:
accum_op.run()
is_all_equal = True
val = takeg_t.eval()
for i in range(len(val)):
for j in range(len(val[i])):
is_all_equal &= (val[i][j] == elems_ave[i][j])
self.assertTrue(is_all_equal)
示例4: testAccumulatorDynamicShape
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ConditionalAccumulator [as 別名]
def testAccumulatorDynamicShape(self):
with self.test_session() as sess:
q = tf.ConditionalAccumulator(tf.float32, name="Q", shape=None)
x = tf.placeholder(tf.float32)
accum_op = q.apply_grad(x)
elems = [[[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]],
[[10.0, 20.0], [30.0, 40.0], [50.0, 60.0]]]
elems_ave = [[(a + b) / len(elems) for a, b in zip(c, d)]
for c, d in zip(elems[0], elems[1])]
takeg_t = q.take_grad(1)
for elem in elems:
sess.run(accum_op, feed_dict={x: elem})
is_all_equal = True
val = takeg_t.eval()
for i in range(len(val)):
for j in range(len(val[i])):
is_all_equal &= (val[i][j] == elems_ave[i][j])
self.assertTrue(is_all_equal)
示例5: testAccumulatorWrongDynamicShape
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ConditionalAccumulator [as 別名]
def testAccumulatorWrongDynamicShape(self):
with self.test_session() as sess:
q = tf.ConditionalAccumulator(tf.float32, name="Q", shape=None)
x = tf.placeholder(tf.float32)
accum_op = q.apply_grad(x)
# First successful apply_grad determines shape
sess.run(accum_op, feed_dict={x: [[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]})
with self.assertRaises(tf.errors.InvalidArgumentError):
sess.run(accum_op, feed_dict={x: [[1.0, 2.0], [3.0, 4.0]]})
with self.assertRaises(tf.errors.InvalidArgumentError):
sess.run(accum_op, feed_dict={x: [[1.0], [2.0], [3.0]]})
示例6: testAccumulatorTakeGrad
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ConditionalAccumulator [as 別名]
def testAccumulatorTakeGrad(self):
with self.test_session():
q = tf.ConditionalAccumulator(
tf.float32, name="Q", shape=tf.TensorShape([1]))
elems = [10.0, 20.0]
elems_ave = sum(elems) / len(elems)
accum_ops = [q.apply_grad((x,), local_step=0) for x in elems]
takeg_t = q.take_grad(1)
for accum_op in accum_ops:
accum_op.run()
val = takeg_t.eval()
self.assertEqual(elems_ave, val)
accum_ops = [q.apply_grad((x,), local_step=1) for x in elems]
takeg_t = q.take_grad(tf.constant(1))
for accum_op in accum_ops:
accum_op.run()
val = takeg_t.eval()
self.assertEqual(elems_ave, val)
示例7: testParallelApplyGrad
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ConditionalAccumulator [as 別名]
def testParallelApplyGrad(self):
with self.test_session() as sess:
q = tf.ConditionalAccumulator(
tf.float32, name="Q", shape=tf.TensorShape([1]))
elems = [10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0]
accum_ops = [q.apply_grad((x,), local_step=0) for x in elems]
takeg_t = q.take_grad(1)
def apply_grad(accum_op):
sess.run(accum_op)
threads = [self.checkedThread(
target=apply_grad, args=(o,)) for o in accum_ops]
for thread in threads:
thread.start()
for thread in threads:
thread.join()
val = takeg_t.eval()
self.assertEqual(val, sum(elems) / len(elems))
示例8: testAccumulatorCancel
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ConditionalAccumulator [as 別名]
def testAccumulatorCancel(self):
with self.test_session() as sess:
q = tf.ConditionalAccumulator(
tf.float32, name="Q", shape=tf.TensorShape([1]))
takeg_t = q.take_grad(1)
takeg_thread = self.checkedThread(
self._blocking_takeg, args=(sess, takeg_t))
takeg_thread.start()
time.sleep(1.0)
sess.close() # Will cancel blocked operation
takeg_thread.join()
示例9: testConstructor
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ConditionalAccumulator [as 別名]
def testConstructor(self):
with tf.Graph().as_default():
q = tf.ConditionalAccumulator(tf.float32, name="Q")
self.assertTrue(isinstance(q.accumulator_ref, tf.Tensor))
self.assertEquals(tf.string_ref, q.accumulator_ref.dtype)
self.assertProtoEquals("""
name:'Q' op:'ConditionalAccumulator'
attr { key: 'dtype' value { type: DT_FLOAT } }
attr { key: 'shape' value { shape { unknown_rank: true} } }
attr { key: 'container' value { s: '' } }
attr { key: 'shared_name' value { s: '' } }
""", q.accumulator_ref.op.node_def)
示例10: testAccumulatorSizeEmpty
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ConditionalAccumulator [as 別名]
def testAccumulatorSizeEmpty(self):
with self.test_session():
q = tf.ConditionalAccumulator(tf.float32, name="Q")
self.assertEqual(q.num_accumulated().eval(), 0)
示例11: testAccumulatorSetGlobalStep
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ConditionalAccumulator [as 別名]
def testAccumulatorSetGlobalStep(self):
with self.test_session():
q = tf.ConditionalAccumulator(
tf.float32, name="Q", shape=tf.TensorShape([1]))
set_global_step_op = q.set_global_step(1)
set_global_step_op.run()
示例12: testAccumulatorApplyGradFloat32
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ConditionalAccumulator [as 別名]
def testAccumulatorApplyGradFloat32(self):
with self.test_session():
q = tf.ConditionalAccumulator(
tf.float32, name="Q", shape=tf.TensorShape([1]))
accum_op = q.apply_grad((10.0,))
accum_op.run()
示例13: testAccumulatorApplyGradWithWrongShape
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ConditionalAccumulator [as 別名]
def testAccumulatorApplyGradWithWrongShape(self):
q = tf.ConditionalAccumulator(tf.float32, name="Q", shape=(3, 2))
with self.assertRaises(ValueError):
q.apply_grad([[1.0, 2.0], [3.0, 4.0]])
with self.assertRaises(ValueError):
q.apply_grad([[1.0], [2.0], [3.0]])
示例14: testAccumulatorSizeAfterApplyGradAndTakeGrad
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ConditionalAccumulator [as 別名]
def testAccumulatorSizeAfterApplyGradAndTakeGrad(self):
with self.test_session():
q = tf.ConditionalAccumulator(
tf.float32, name="Q", shape=tf.TensorShape([1]))
accum_op = q.apply_grad((10.0,))
extract_t = q.take_grad(2)
# Applying gradient multiple times to increase size from 0 to 2.
self.assertEqual(q.num_accumulated().eval(), 0)
accum_op.run()
self.assertEqual(q.num_accumulated().eval(), 1)
accum_op.run()
self.assertEqual(q.num_accumulated().eval(), 2)
# Extract will reduce size to 0
extract_t.op.run()
self.assertEqual(q.num_accumulated().eval(), 0)
# Take gradients always sets the size back to 0 if successful.
accum_op = q.apply_grad((10.0,), local_step=1)
accum_op.run()
accum_op.run()
accum_op.run()
accum_op.run()
self.assertEqual(q.num_accumulated().eval(), 4)
extract_t.op.run()
self.assertEqual(q.num_accumulated().eval(), 0)
示例15: testAccumulatorInvalidTakeGrad
# 需要導入模塊: import tensorflow [as 別名]
# 或者: from tensorflow import ConditionalAccumulator [as 別名]
def testAccumulatorInvalidTakeGrad(self):
with self.test_session():
q = tf.ConditionalAccumulator(
tf.float32, name="Q", shape=tf.TensorShape([1]))
elems = [10.0, 20.0]
accum_ops = [q.apply_grad((x,)) for x in elems]
takeg_t = q.take_grad(-1)
for accum_op in accum_ops:
accum_op.run()
with self.assertRaises(tf.errors.InvalidArgumentError):
takeg_t.eval()