當前位置: 首頁>>代碼示例>>Python>>正文


Python event_accumulator.EventAccumulator方法代碼示例

本文整理匯總了Python中tensorboard.backend.event_processing.event_accumulator.EventAccumulator方法的典型用法代碼示例。如果您正苦於以下問題:Python event_accumulator.EventAccumulator方法的具體用法?Python event_accumulator.EventAccumulator怎麽用?Python event_accumulator.EventAccumulator使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorboard.backend.event_processing.event_accumulator的用法示例。


在下文中一共展示了event_accumulator.EventAccumulator方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: load_log_dirs

# 需要導入模塊: from tensorboard.backend.event_processing import event_accumulator [as 別名]
# 或者: from tensorboard.backend.event_processing.event_accumulator import EventAccumulator [as 別名]
def load_log_dirs(self, dirs, **kwargs):
        kwargs.setdefault('right_align', False)
        kwargs.setdefault('window', 0)
        xy_list = []
        from tensorboard.backend.event_processing.event_accumulator import EventAccumulator
        for dir in dirs:
            event_acc = EventAccumulator(dir)
            event_acc.Reload()
            _, x, y = zip(*event_acc.Scalars(kwargs['tag']))
            xy_list.append([x, y])
        if kwargs['right_align']:
            x_max = float('inf')
            for x, y in xy_list:
                x_max = min(x_max, len(y))
            xy_list = [[x[:x_max], y[:x_max]] for x, y in xy_list]
        if kwargs['window']:
            xy_list = [self._window_func(np.asarray(x), np.asarray(y), kwargs['window'], np.mean) for x, y in xy_list]
        return xy_list 
開發者ID:ShangtongZhang,項目名稱:DeepRL,代碼行數:20,代碼來源:plot.py

示例2: main

# 需要導入模塊: from tensorboard.backend.event_processing import event_accumulator [as 別名]
# 或者: from tensorboard.backend.event_processing.event_accumulator import EventAccumulator [as 別名]
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--path', type=str, required=True)
    parser.add_argument('--output-dir', '-o', type=str)
    args = parser.parse_args()

    event_acc = event_accumulator.EventAccumulator(
        args.path, size_guidance={'scalars': 0})
    event_acc.Reload()

    scalars = {}
    for tag in event_acc.Tags()['scalars']:
        events = event_acc.Scalars(tag)
        scalars[tag] = [event.value for event in events]

    if args.output_dir is not None:
        output_dir = pathlib.Path(args.output_dir)
    else:
        output_dir = pathlib.Path(args.path).parent
    output_dir.mkdir(exist_ok=True, parents=True)

    outpath = output_dir / 'all_scalars.json'
    with open(outpath, 'w') as fout:
        json.dump(scalars, fout) 
開發者ID:hysts,項目名稱:pytorch_image_classification,代碼行數:26,代碼來源:extract_scalars.py

示例3: testTags

# 需要導入模塊: from tensorboard.backend.event_processing import event_accumulator [as 別名]
# 或者: from tensorboard.backend.event_processing.event_accumulator import EventAccumulator [as 別名]
def testTags(self):
        """Tags should be found in EventAccumulator after adding some
        events."""
        gen = _EventGenerator(self)
        gen.AddScalar("s1")
        gen.AddScalar("s2")
        gen.AddHistogram("hst1")
        gen.AddHistogram("hst2")
        gen.AddImage("im1")
        gen.AddImage("im2")
        gen.AddAudio("snd1")
        gen.AddAudio("snd2")
        acc = ea.EventAccumulator(gen)
        acc.Reload()
        self.assertTagsEqual(
            acc.Tags(),
            {
                ea.IMAGES: ["im1", "im2"],
                ea.AUDIO: ["snd1", "snd2"],
                ea.SCALARS: ["s1", "s2"],
                ea.HISTOGRAMS: ["hst1", "hst2"],
                ea.COMPRESSED_HISTOGRAMS: ["hst1", "hst2"],
            },
        ) 
開發者ID:tensorflow,項目名稱:tensorboard,代碼行數:26,代碼來源:event_accumulator_test.py

示例4: testReload

# 需要導入模塊: from tensorboard.backend.event_processing import event_accumulator [as 別名]
# 或者: from tensorboard.backend.event_processing.event_accumulator import EventAccumulator [as 別名]
def testReload(self):
        """EventAccumulator contains suitable tags after calling Reload."""
        gen = _EventGenerator(self)
        acc = ea.EventAccumulator(gen)
        acc.Reload()
        self.assertTagsEqual(acc.Tags(), {})
        gen.AddScalar("s1")
        gen.AddScalar("s2")
        gen.AddHistogram("hst1")
        gen.AddHistogram("hst2")
        gen.AddImage("im1")
        gen.AddImage("im2")
        gen.AddAudio("snd1")
        gen.AddAudio("snd2")
        acc.Reload()
        self.assertTagsEqual(
            acc.Tags(),
            {
                ea.IMAGES: ["im1", "im2"],
                ea.AUDIO: ["snd1", "snd2"],
                ea.SCALARS: ["s1", "s2"],
                ea.HISTOGRAMS: ["hst1", "hst2"],
                ea.COMPRESSED_HISTOGRAMS: ["hst1", "hst2"],
            },
        ) 
開發者ID:tensorflow,項目名稱:tensorboard,代碼行數:27,代碼來源:event_accumulator_test.py

示例5: testKeyError

# 需要導入模塊: from tensorboard.backend.event_processing import event_accumulator [as 別名]
# 或者: from tensorboard.backend.event_processing.event_accumulator import EventAccumulator [as 別名]
def testKeyError(self):
        """KeyError should be raised when accessing non-existing keys."""
        gen = _EventGenerator(self)
        acc = ea.EventAccumulator(gen)
        acc.Reload()
        with self.assertRaises(KeyError):
            acc.Scalars("s1")
        with self.assertRaises(KeyError):
            acc.Scalars("hst1")
        with self.assertRaises(KeyError):
            acc.Scalars("im1")
        with self.assertRaises(KeyError):
            acc.Histograms("s1")
        with self.assertRaises(KeyError):
            acc.Histograms("im1")
        with self.assertRaises(KeyError):
            acc.Images("s1")
        with self.assertRaises(KeyError):
            acc.Images("hst1")
        with self.assertRaises(KeyError):
            acc.Audio("s1")
        with self.assertRaises(KeyError):
            acc.Audio("hst1") 
開發者ID:tensorflow,項目名稱:tensorboard,代碼行數:25,代碼來源:event_accumulator_test.py

示例6: testNonValueEvents

# 需要導入模塊: from tensorboard.backend.event_processing import event_accumulator [as 別名]
# 或者: from tensorboard.backend.event_processing.event_accumulator import EventAccumulator [as 別名]
def testNonValueEvents(self):
        """Non-value events in the generator don't cause early exits."""
        gen = _EventGenerator(self)
        acc = ea.EventAccumulator(gen)
        gen.AddScalar("s1", wall_time=1, step=10, value=20)
        gen.AddEvent(
            event_pb2.Event(wall_time=2, step=20, file_version="nots2")
        )
        gen.AddScalar("s3", wall_time=3, step=100, value=1)
        gen.AddHistogram("hst1")
        gen.AddImage("im1")
        gen.AddAudio("snd1")

        acc.Reload()
        self.assertTagsEqual(
            acc.Tags(),
            {
                ea.IMAGES: ["im1"],
                ea.AUDIO: ["snd1"],
                ea.SCALARS: ["s1", "s3"],
                ea.HISTOGRAMS: ["hst1"],
                ea.COMPRESSED_HISTOGRAMS: ["hst1"],
            },
        ) 
開發者ID:tensorflow,項目名稱:tensorboard,代碼行數:26,代碼來源:event_accumulator_test.py

示例7: testOrphanedDataNotDiscardedIfFlagUnset

# 需要導入模塊: from tensorboard.backend.event_processing import event_accumulator [as 別名]
# 或者: from tensorboard.backend.event_processing.event_accumulator import EventAccumulator [as 別名]
def testOrphanedDataNotDiscardedIfFlagUnset(self):
        """Tests that events are not discarded if purge_orphaned_data is
        false."""
        gen = _EventGenerator(self)
        acc = ea.EventAccumulator(gen, purge_orphaned_data=False)

        gen.AddEvent(
            event_pb2.Event(wall_time=0, step=0, file_version="brain.Event:1")
        )
        gen.AddScalar("s1", wall_time=1, step=100, value=20)
        gen.AddScalar("s1", wall_time=1, step=200, value=20)
        gen.AddScalar("s1", wall_time=1, step=300, value=20)
        acc.Reload()
        ## Check that number of items are what they should be
        self.assertEqual([x.step for x in acc.Scalars("s1")], [100, 200, 300])

        gen.AddScalar("s1", wall_time=1, step=101, value=20)
        gen.AddScalar("s1", wall_time=1, step=201, value=20)
        gen.AddScalar("s1", wall_time=1, step=301, value=20)
        acc.Reload()
        ## Check that we have NOT discarded 200 and 300 from s1
        self.assertEqual(
            [x.step for x in acc.Scalars("s1")], [100, 200, 300, 101, 201, 301]
        ) 
開發者ID:tensorflow,項目名稱:tensorboard,代碼行數:26,代碼來源:event_accumulator_test.py

示例8: testSummaryMetadata_FirstMetadataWins

# 需要導入模塊: from tensorboard.backend.event_processing import event_accumulator [as 別名]
# 或者: from tensorboard.backend.event_processing.event_accumulator import EventAccumulator [as 別名]
def testSummaryMetadata_FirstMetadataWins(self):
        logdir = self.get_temp_dir()
        summary_metadata_1 = summary_pb2.SummaryMetadata(
            display_name="current tagee",
            summary_description="no",
            plugin_data=summary_pb2.SummaryMetadata.PluginData(
                plugin_name="outlet", content=b"120v"
            ),
        )
        self._writeMetadata(logdir, summary_metadata_1, nonce="1")
        acc = ea.EventAccumulator(logdir)
        acc.Reload()
        summary_metadata_2 = summary_pb2.SummaryMetadata(
            display_name="tagee of the future",
            summary_description="definitely not",
            plugin_data=summary_pb2.SummaryMetadata.PluginData(
                plugin_name="plug", content=b"110v"
            ),
        )
        self._writeMetadata(logdir, summary_metadata_2, nonce="2")
        acc.Reload()

        self.assertProtoEquals(
            summary_metadata_1, acc.SummaryMetadata("you_are_it")
        ) 
開發者ID:tensorflow,項目名稱:tensorboard,代碼行數:27,代碼來源:event_accumulator_test.py

示例9: Reload

# 需要導入模塊: from tensorboard.backend.event_processing import event_accumulator [as 別名]
# 或者: from tensorboard.backend.event_processing.event_accumulator import EventAccumulator [as 別名]
def Reload(self):
        """Call `Reload` on every `EventAccumulator`."""
        logger.info("Beginning EventMultiplexer.Reload()")
        self._reload_called = True
        # Build a list so we're safe even if the list of accumulators is modified
        # even while we're reloading.
        with self._accumulators_mutex:
            items = list(self._accumulators.items())

        names_to_delete = set()
        for name, accumulator in items:
            try:
                accumulator.Reload()
            except (OSError, IOError) as e:
                logger.error("Unable to reload accumulator '%s': %s", name, e)
            except directory_watcher.DirectoryDeletedError:
                names_to_delete.add(name)

        with self._accumulators_mutex:
            for name in names_to_delete:
                logger.warning("Deleting accumulator '%s'", name)
                del self._accumulators[name]
        logger.info("Finished with EventMultiplexer.Reload()")
        return self 
開發者ID:tensorflow,項目名稱:tensorboard,代碼行數:26,代碼來源:event_multiplexer.py

示例10: test_study_name

# 需要導入模塊: from tensorboard.backend.event_processing import event_accumulator [as 別名]
# 或者: from tensorboard.backend.event_processing.event_accumulator import EventAccumulator [as 別名]
def test_study_name() -> None:
    dirname = tempfile.mkdtemp()
    metric_name = "target"
    study_name = "test_tensorboard_integration"

    tbcallback = TensorBoardCallback(dirname, metric_name)
    study = optuna.create_study(study_name=study_name)
    study.optimize(_objective_func, n_trials=1, callbacks=[tbcallback])

    event_acc = EventAccumulator(os.path.join(dirname, "trial-0"))
    event_acc.Reload()

    try:
        assert len(event_acc.Tensors("target")) == 1
    except Exception as e:
        raise e
    finally:
        shutil.rmtree(dirname) 
開發者ID:optuna,項目名稱:optuna,代碼行數:20,代碼來源:test_tensorboard.py

示例11: parse_indicators_single_path_nas

# 需要導入模塊: from tensorboard.backend.event_processing import event_accumulator [as 別名]
# 或者: from tensorboard.backend.event_processing.event_accumulator import EventAccumulator [as 別名]
def parse_indicators_single_path_nas(path, tf_size_guidance):

  event_acc = EventAccumulator(path, tf_size_guidance)
  event_acc.Reload()

  # Show all tags in the log file
  tags = event_acc.Tags()['scalars']
  labels = ['t5x5_','t50c_','t100c_']
  inds = []
  for idx in range(20):
    layer_row = []
    for label_ in labels:
      summary_label_ = label_ + str(idx+1) 
      decision_ij = event_acc.Scalars(summary_label_)
      layer_row.append(decision_ij[-1].value)
    inds.append(layer_row)
  return inds 
開發者ID:dstamoulis,項目名稱:single-path-nas,代碼行數:19,代碼來源:parse_search_output.py

示例12: parse_progress

# 需要導入模塊: from tensorboard.backend.event_processing import event_accumulator [as 別名]
# 或者: from tensorboard.backend.event_processing.event_accumulator import EventAccumulator [as 別名]
def parse_progress(path, tf_size_guidance):

  event_acc = EventAccumulator(path, tf_size_guidance)
  event_acc.Reload()
 
  tags = event_acc.Tags()['scalars']
  print(tags)

  # Show all tags in the log file
  tags = event_acc.Tags()['scalars']
  runtimes_scalar = event_acc.Scalars('runtime_ms')
  runtimes = [runtimes_scalar[i].value for i in range(len(runtimes_scalar))]

  loss_scalar = event_acc.Scalars('loss')
  loss = [loss_scalar[i].value for i in range(len(loss_scalar))]
  assert len(runtimes) == len(loss)

  return runtimes, loss 
開發者ID:dstamoulis,項目名稱:single-path-nas,代碼行數:20,代碼來源:parse_search_output.py

示例13: plot_from_summaries

# 需要導入模塊: from tensorboard.backend.event_processing import event_accumulator [as 別名]
# 或者: from tensorboard.backend.event_processing.event_accumulator import EventAccumulator [as 別名]
def plot_from_summaries(summaries_path, title=None, samples_per_update=512, updates_per_log=100):
    acc = EventAccumulator(summaries_path)
    acc.Reload()

    rews_mean = np.array([s[2] for s in acc.Scalars('Rewards/Mean')])
    rews_std = np.array([s[2] for s in acc.Scalars('Rewards/Std')])
    x = samples_per_update * updates_per_log * np.arange(0, len(rews_mean))

    if not title:
        title = summaries_path.split('/')[-1].split('_')[0]

    plt.plot(x, rews_mean)
    plt.fill_between(x, rews_mean - rews_std, rews_mean + rews_std, alpha=0.2)
    plt.xlabel('Samples')
    plt.ylabel('Episode Rewards')
    plt.title(title)
    plt.xlim([0, x[-1]+1])
    plt.ticklabel_format(style='sci', axis='x', scilimits=(0, 0)) 
開發者ID:inoryy,項目名稱:reaver,代碼行數:20,代碼來源:plot.py

示例14: Reload

# 需要導入模塊: from tensorboard.backend.event_processing import event_accumulator [as 別名]
# 或者: from tensorboard.backend.event_processing.event_accumulator import EventAccumulator [as 別名]
def Reload(self):
    """Call `Reload` on every `EventAccumulator`."""
    tf.logging.info('Beginning EventMultiplexer.Reload()')
    self._reload_called = True
    # Build a list so we're safe even if the list of accumulators is modified
    # even while we're reloading.
    with self._accumulators_mutex:
      items = list(self._accumulators.items())

    names_to_delete = set()
    for name, accumulator in items:
      try:
        accumulator.Reload()
      except (OSError, IOError) as e:
        tf.logging.error("Unable to reload accumulator '%s': %s", name, e)
      except directory_watcher.DirectoryDeletedError:
        names_to_delete.add(name)

    with self._accumulators_mutex:
      for name in names_to_delete:
        tf.logging.warning("Deleting accumulator '%s'", name)
        del self._accumulators[name]
    tf.logging.info('Finished with EventMultiplexer.Reload()')
    return self 
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:26,代碼來源:event_multiplexer.py

示例15: main

# 需要導入模塊: from tensorboard.backend.event_processing import event_accumulator [as 別名]
# 或者: from tensorboard.backend.event_processing.event_accumulator import EventAccumulator [as 別名]
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--path', type=str, required=True)
    parser.add_argument('--output-dir', '-o', type=str)
    args = parser.parse_args()

    event_acc = event_accumulator.EventAccumulator(args.path,
                                                   size_guidance={'images': 0})
    event_acc.Reload()

    if args.output_dir is not None:
        output_dir = pathlib.Path(args.output_dir)
    else:
        output_dir = pathlib.Path(args.path).parent / 'images'
    output_dir.mkdir(exist_ok=True, parents=True)

    for tag in event_acc.Tags()['images']:
        events = event_acc.Images(tag)

        tag_name = tag.replace('/', '_')
        dirpath = output_dir / tag_name
        dirpath.mkdir(exist_ok=True, parents=True)

        for index, event in enumerate(events):
            s = np.frombuffer(event.encoded_image_string, dtype=np.uint8)
            image = cv2.imdecode(s, cv2.IMREAD_COLOR)
            outpath = dirpath / f'{index:04}.jpg'
            cv2.imwrite(outpath.as_posix(), image) 
開發者ID:hysts,項目名稱:pytorch_image_classification,代碼行數:30,代碼來源:extract_images.py


注:本文中的tensorboard.backend.event_processing.event_accumulator.EventAccumulator方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。