本文整理匯總了Python中tensorboard.FileWriter方法的典型用法代碼示例。如果您正苦於以下問題:Python tensorboard.FileWriter方法的具體用法?Python tensorboard.FileWriter怎麽用?Python tensorboard.FileWriter使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorboard
的用法示例。
在下文中一共展示了tensorboard.FileWriter方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: import tensorboard [as 別名]
# 或者: from tensorboard import FileWriter [as 別名]
def __init__(self, output_dir):
if cfg.TRAIN.FLAG:
self.model_dir = os.path.join(output_dir, 'Model')
self.image_dir = os.path.join(output_dir, 'Image')
self.log_dir = os.path.join(output_dir, 'Log')
mkdir_p(self.model_dir)
mkdir_p(self.image_dir)
mkdir_p(self.log_dir)
self.summary_writer = FileWriter(self.log_dir)
self.max_epoch = cfg.TRAIN.MAX_EPOCH
self.snapshot_interval = cfg.TRAIN.SNAPSHOT_INTERVAL
s_gpus = cfg.GPU_ID.split(',')
self.gpus = [int(ix) for ix in s_gpus]
self.num_gpus = len(self.gpus)
self.batch_size = cfg.TRAIN.BATCH_SIZE * self.num_gpus
torch.cuda.set_device(self.gpus[0])
cudnn.benchmark = True
# ############# For training stageI GAN #############
示例2: __init__
# 需要導入模塊: import tensorboard [as 別名]
# 或者: from tensorboard import FileWriter [as 別名]
def __init__(self, output_dir):
if cfg.TRAIN.FLAG:
self.model_dir = os.path.join(output_dir, 'Model')
self.image_dir = os.path.join(output_dir, 'Image')
self.log_dir = os.path.join(output_dir, 'Log')
mkdir_p(self.model_dir)
mkdir_p(self.image_dir)
mkdir_p(self.log_dir)
self.summary_writer = FileWriter(self.log_dir)
self.max_epoch = cfg.TRAIN.MAX_EPOCH
self.snapshot_interval = cfg.TRAIN.SNAPSHOT_INTERVAL
self.max_objects = 4
s_gpus = cfg.GPU_ID.split(',')
self.gpus = [int(ix) for ix in s_gpus]
self.num_gpus = len(self.gpus)
self.batch_size = cfg.TRAIN.BATCH_SIZE
torch.cuda.set_device(self.gpus[0])
cudnn.benchmark = True
# ############# For training stageI GAN #############
示例3: __init__
# 需要導入模塊: import tensorboard [as 別名]
# 或者: from tensorboard import FileWriter [as 別名]
def __init__(self, output_dir):
if cfg.TRAIN.FLAG:
self.model_dir = os.path.join(output_dir, 'Model')
self.image_dir = os.path.join(output_dir, 'Image')
self.log_dir = os.path.join(output_dir, 'Log')
mkdir_p(self.model_dir)
mkdir_p(self.image_dir)
mkdir_p(self.log_dir)
self.summary_writer = FileWriter(self.log_dir)
self.max_epoch = cfg.TRAIN.MAX_EPOCH
self.snapshot_interval = cfg.TRAIN.SNAPSHOT_INTERVAL
self.max_objects = 3
s_gpus = cfg.GPU_ID.split(',')
self.gpus = [int(ix) for ix in s_gpus]
self.num_gpus = len(self.gpus)
self.batch_size = cfg.TRAIN.BATCH_SIZE
torch.cuda.set_device(self.gpus[0])
cudnn.benchmark = True
# ############# For training stageI GAN #############
示例4: __init__
# 需要導入模塊: import tensorboard [as 別名]
# 或者: from tensorboard import FileWriter [as 別名]
def __init__(self, output_dir):
if cfg.TRAIN.FLAG:
self.model_dir = os.path.join(output_dir, 'Model')
self.image_dir = os.path.join(output_dir, 'Image')
self.log_dir = os.path.join(output_dir, 'Log')
mkdir_p(self.model_dir)
mkdir_p(self.image_dir)
mkdir_p(self.log_dir)
self.summary_writer = FileWriter(self.log_dir)
self.max_epoch = cfg.TRAIN.MAX_EPOCH
self.snapshot_interval = cfg.TRAIN.SNAPSHOT_INTERVAL
s_gpus = cfg.GPU_ID.split(',')
self.gpus = [int(ix) for ix in s_gpus]
self.num_gpus = len(self.gpus)
self.batch_size = cfg.TRAIN.BATCH_SIZE
torch.cuda.set_device(self.gpus[0])
cudnn.benchmark = True
# ############# For training stageI GAN #############
示例5: __init__
# 需要導入模塊: import tensorboard [as 別名]
# 或者: from tensorboard import FileWriter [as 別名]
def __init__(self, output_dir, data_loader, imsize):
if cfg.TRAIN.FLAG:
self.model_dir = os.path.join(output_dir, 'Model')
self.image_dir = os.path.join(output_dir, 'Image')
self.log_dir = os.path.join(output_dir, 'Log')
mkdir_p(self.model_dir)
mkdir_p(self.image_dir)
mkdir_p(self.log_dir)
self.summary_writer = FileWriter(self.log_dir)
s_gpus = cfg.GPU_ID.split(',')
self.gpus = [int(ix) for ix in s_gpus]
self.num_gpus = len(self.gpus)
torch.cuda.set_device(self.gpus[0])
cudnn.benchmark = True
self.batch_size = cfg.TRAIN.BATCH_SIZE * self.num_gpus
self.max_epoch = cfg.TRAIN.MAX_EPOCH
self.snapshot_interval = cfg.TRAIN.SNAPSHOT_INTERVAL
self.data_loader = data_loader
self.num_batches = len(self.data_loader)
示例6: test_event_logging
# 需要導入模塊: import tensorboard [as 別名]
# 或者: from tensorboard import FileWriter [as 別名]
def test_event_logging():
logdir = './experiment/'
summary_writer = FileWriter(logdir)
scalar_value = 1.0
s = scalar('test_scalar', scalar_value)
summary_writer.add_summary(s, global_step=1)
summary_writer.close()
assert os.path.isdir(logdir)
assert len(os.listdir(logdir)) == 1
summary_writer = FileWriter(logdir)
scalar_value = 1.0
s = scalar('test_scalar', scalar_value)
summary_writer.add_summary(s, global_step=1)
summary_writer.close()
assert os.path.isdir(logdir)
assert len(os.listdir(logdir)) == 2
# clean up.
shutil.rmtree(logdir)
示例7: __init__
# 需要導入模塊: import tensorboard [as 別名]
# 或者: from tensorboard import FileWriter [as 別名]
def __init__(self, logging_dir, logfile_name, print_freq = 10):
self.log_dir = logging_dir
self.print_freq = print_freq
if not os.path.isdir(logging_dir):
os.makedirs(logging_dir)
self.summary_writer = tensorboard.FileWriter(logdir=logging_dir)
# standard logger to print to terminal
logfile = osp.join(logging_dir,'log.txt')
stdout = Logger(logfile)
sys.stdout = stdout
示例8: test_log_scalar_summary
# 需要導入模塊: import tensorboard [as 別名]
# 或者: from tensorboard import FileWriter [as 別名]
def test_log_scalar_summary():
logdir = './experiment/scalar'
writer = FileWriter(logdir)
for i in range(10):
s = scalar('scalar', i)
writer.add_summary(s, i+1)
writer.flush()
writer.close()
示例9: test_log_histogram_summary
# 需要導入模塊: import tensorboard [as 別名]
# 或者: from tensorboard import FileWriter [as 別名]
def test_log_histogram_summary():
logdir = './experiment/histogram'
writer = FileWriter(logdir)
for i in range(10):
mu, sigma = i * 0.1, 1.0
values = np.random.normal(mu, sigma, 10000) # larger for better looking.
hist = summary.histogram('discrete_normal', values)
writer.add_summary(hist, i+1)
writer.flush()
writer.close()
示例10: test_log_image_summary
# 需要導入模塊: import tensorboard [as 別名]
# 或者: from tensorboard import FileWriter [as 別名]
def test_log_image_summary():
logdir = './experiment/image'
writer = FileWriter(logdir)
path = 'http://yann.lecun.com/exdb/mnist/'
(train_lbl, train_img) = read_data(
path+'train-labels-idx1-ubyte.gz', path+'train-images-idx3-ubyte.gz')
for i in range(10):
tensor = np.reshape(train_img[i], (28, 28, 1))
im = summary.image('mnist/'+str(i), tensor) # in this case, images are grouped under `mnist` tag.
writer.add_summary(im, i+1)
writer.flush()
writer.close()