當前位置: 首頁>>代碼示例>>Python>>正文


Python usr_dir.import_usr_dir方法代碼示例

本文整理匯總了Python中tensor2tensor.utils.usr_dir.import_usr_dir方法的典型用法代碼示例。如果您正苦於以下問題:Python usr_dir.import_usr_dir方法的具體用法?Python usr_dir.import_usr_dir怎麽用?Python usr_dir.import_usr_dir使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensor2tensor.utils.usr_dir的用法示例。


在下文中一共展示了usr_dir.import_usr_dir方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: create_teacher_experiment

# 需要導入模塊: from tensor2tensor.utils import usr_dir [as 別名]
# 或者: from tensor2tensor.utils.usr_dir import import_usr_dir [as 別名]
def create_teacher_experiment(run_config, hparams, argv):
  """Creates experiment function."""
  tf.logging.info("training teacher")
  tf.logging.set_verbosity(tf.logging.INFO)
  trainer_lib.set_random_seed(FLAGS.random_seed)
  usr_dir.import_usr_dir(FLAGS.t2t_usr_dir)
  t2t_trainer.maybe_log_registry_and_exit()

  if FLAGS.cloud_mlengine:
    return cloud_mlengine.launch()

  if FLAGS.generate_data:
    t2t_trainer.generate_data()

  if cloud_mlengine.job_dir():
    FLAGS.output_dir = cloud_mlengine.job_dir()

  if argv:
    t2t_trainer.set_hparams_from_args(argv[1:])

  with t2t_trainer.maybe_cloud_tpu():
    hparams.distill_phase = "train"
    exp_fn = t2t_trainer.create_experiment_fn()
    exp = exp_fn(run_config, hparams)
    return exp 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:27,代碼來源:t2t_distill.py

示例2: main

# 需要導入模塊: from tensor2tensor.utils import usr_dir [as 別名]
# 或者: from tensor2tensor.utils.usr_dir import import_usr_dir [as 別名]
def main(_):
  tf.logging.set_verbosity(tf.logging.INFO)
  trainer_lib.set_random_seed(FLAGS.random_seed)
  usr_dir.import_usr_dir(FLAGS.t2t_usr_dir)

  ckpt_dir = os.path.expanduser(FLAGS.output_dir)

  hparams = create_hparams()
  hparams.no_data_parallelism = True  # To clear the devices
  run_config = t2t_trainer.create_run_config(hparams)

  estimator = create_estimator(run_config, hparams)

  problem = hparams.problem
  strategy = trainer_lib.create_export_strategy(problem, hparams)

  export_dir = os.path.join(ckpt_dir, "export", strategy.name)
  strategy.export(
      estimator,
      export_dir,
      checkpoint_path=tf.train.latest_checkpoint(ckpt_dir)) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:23,代碼來源:export.py

示例3: main

# 需要導入模塊: from tensor2tensor.utils import usr_dir [as 別名]
# 或者: from tensor2tensor.utils.usr_dir import import_usr_dir [as 別名]
def main(_):
  tf.logging.set_verbosity(tf.logging.INFO)
  validate_flags()
  usr_dir.import_usr_dir(FLAGS.t2t_usr_dir)
  problem = registry.problem(FLAGS.problem)
  hparams = tf.contrib.training.HParams(
      data_dir=os.path.expanduser(FLAGS.data_dir))
  problem.get_hparams(hparams)
  request_fn = make_request_fn()
  while True:
    inputs = FLAGS.inputs_once if FLAGS.inputs_once else input(">> ")
    outputs = serving_utils.predict([inputs], problem, request_fn)
    outputs, = outputs
    output, score = outputs
    print_str = """
Input:
{inputs}

Output (Score {score:.3f}):
{output}
    """
    print(print_str.format(inputs=inputs, output=output, score=score))
    if FLAGS.inputs_once:
      break 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:26,代碼來源:query.py

示例4: create_teacher_experiment

# 需要導入模塊: from tensor2tensor.utils import usr_dir [as 別名]
# 或者: from tensor2tensor.utils.usr_dir import import_usr_dir [as 別名]
def create_teacher_experiment(run_config, hparams, argv):
  """Creates experiment function."""
  tf.logging.info("training teacher")
  tf.logging.set_verbosity(tf.logging.INFO)
  trainer_lib.set_random_seed(FLAGS.random_seed)
  usr_dir.import_usr_dir(FLAGS.t2t_usr_dir)
  t2t_trainer.maybe_log_registry_and_exit()

  if FLAGS.cloud_mlengine:
    return cloud_mlengine.launch()

  if FLAGS.generate_data:
    t2t_trainer.generate_data()

  if cloud_mlengine.job_dir():
    FLAGS.output_dir = cloud_mlengine.job_dir()

  if argv:
    t2t_trainer.set_hparams_from_args(argv[1:])

  hparams.distill_phase = "train"
  exp_fn = t2t_trainer.create_experiment_fn()
  exp = exp_fn(run_config, hparams)
  return exp 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:26,代碼來源:t2t_distill.py

示例5: create_student_experiment

# 需要導入模塊: from tensor2tensor.utils import usr_dir [as 別名]
# 或者: from tensor2tensor.utils.usr_dir import import_usr_dir [as 別名]
def create_student_experiment(run_config, hparams, argv):
  """Creates experiment function."""
  tf.logging.info("training student")
  tf.logging.set_verbosity(tf.logging.INFO)
  trainer_lib.set_random_seed(FLAGS.random_seed)
  usr_dir.import_usr_dir(FLAGS.t2t_usr_dir)
  t2t_trainer.maybe_log_registry_and_exit()

  if FLAGS.cloud_mlengine:
    return cloud_mlengine.launch()

  if FLAGS.generate_data:
    t2t_trainer.generate_data()

  if cloud_mlengine.job_dir():
    FLAGS.output_dir = cloud_mlengine.job_dir()

  if argv:
    t2t_trainer.set_hparams_from_args(argv[1:])

  hparams.add_hparam("teacher_dir", FLAGS.teacher_dir)
  hparams.distill_phase = "distill"
  exp_fn = t2t_trainer.create_experiment_fn()
  exp = exp_fn(run_config, hparams)
  return exp 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:27,代碼來源:t2t_distill.py

示例6: create_student_experiment

# 需要導入模塊: from tensor2tensor.utils import usr_dir [as 別名]
# 或者: from tensor2tensor.utils.usr_dir import import_usr_dir [as 別名]
def create_student_experiment(run_config, hparams, argv):
  """Creates experiment function."""
  tf.logging.info("training student")
  tf.logging.set_verbosity(tf.logging.INFO)
  trainer_lib.set_random_seed(FLAGS.random_seed)
  usr_dir.import_usr_dir(FLAGS.t2t_usr_dir)
  t2t_trainer.maybe_log_registry_and_exit()

  if FLAGS.cloud_mlengine:
    return cloud_mlengine.launch()

  if FLAGS.generate_data:
    t2t_trainer.generate_data()

  if cloud_mlengine.job_dir():
    FLAGS.output_dir = cloud_mlengine.job_dir()

  if argv:
    t2t_trainer.set_hparams_from_args(argv[1:])

  with t2t_trainer.maybe_cloud_tpu():
    hparams.add_hparam("teacher_dir", FLAGS.teacher_dir)
    hparams.distill_phase = "distill"
    exp_fn = t2t_trainer.create_experiment_fn()
    exp = exp_fn(run_config, hparams)
    return exp 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:28,代碼來源:t2t_distill.py

示例7: main

# 需要導入模塊: from tensor2tensor.utils import usr_dir [as 別名]
# 或者: from tensor2tensor.utils.usr_dir import import_usr_dir [as 別名]
def main(argv):
  tf.logging.set_verbosity(tf.logging.INFO)
  trainer_lib.set_random_seed(FLAGS.random_seed)
  usr_dir.import_usr_dir(FLAGS.t2t_usr_dir)
  maybe_log_registry_and_exit()


  if FLAGS.cloud_mlengine:
    cloud_mlengine.launch()
    return

  if FLAGS.generate_data:
    generate_data()

  if cloud_mlengine.job_dir():
    FLAGS.output_dir = cloud_mlengine.job_dir()

  if argv:
    set_hparams_from_args(argv[1:])
  hparams = create_hparams()

  with maybe_cloud_tpu():
    exp_fn = create_experiment_fn()
    exp = exp_fn(create_run_config(hparams), hparams)
    if is_chief():
      save_metadata(hparams)
    execute_schedule(exp) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:29,代碼來源:t2t_trainer.py

示例8: __init__

# 需要導入模塊: from tensor2tensor.utils import usr_dir [as 別名]
# 或者: from tensor2tensor.utils.usr_dir import import_usr_dir [as 別名]
def __init__(self, processor_configuration):
    """Creates the Transformer estimator.

    Args:
      processor_configuration: A ProcessorConfiguration protobuffer with the
        transformer fields populated.
    """
    # Do the pre-setup tensor2tensor requires for flags and configurations.
    transformer_config = processor_configuration["transformer"]
    FLAGS.output_dir = transformer_config["model_dir"]
    usr_dir.import_usr_dir(FLAGS.t2t_usr_dir)
    data_dir = os.path.expanduser(transformer_config["data_dir"])

    # Create the basic hyper parameters.
    self.hparams = trainer_lib.create_hparams(
        transformer_config["hparams_set"],
        transformer_config["hparams"],
        data_dir=data_dir,
        problem_name=transformer_config["problem"])

    decode_hp = decoding.decode_hparams()
    decode_hp.add_hparam("shards", 1)
    decode_hp.add_hparam("shard_id", 0)

    # Create the estimator and final hyper parameters.
    self.estimator = trainer_lib.create_estimator(
        transformer_config["model"],
        self.hparams,
        t2t_trainer.create_run_config(self.hparams),
        decode_hparams=decode_hp, use_tpu=False)

    # Fetch the vocabulary and other helpful variables for decoding.
    self.source_vocab = self.hparams.problem_hparams.vocabulary["inputs"]
    self.targets_vocab = self.hparams.problem_hparams.vocabulary["targets"]
    self.const_array_size = 10000

    # Prepare the Transformer's debug data directory.
    run_dirs = sorted(glob.glob(os.path.join("/tmp/t2t_server_dump", "run_*")))
    for run_dir in run_dirs:
      shutil.rmtree(run_dir) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:42,代碼來源:transformer_model.py

示例9: create_student_experiment

# 需要導入模塊: from tensor2tensor.utils import usr_dir [as 別名]
# 或者: from tensor2tensor.utils.usr_dir import import_usr_dir [as 別名]
def create_student_experiment(run_config, hparams, argv):
  """Creates experiment function."""
  tf.logging.info("training student")
  tf.logging.set_verbosity(tf.logging.INFO)
  trainer_lib.set_random_seed(FLAGS.random_seed)
  usr_dir.import_usr_dir(FLAGS.t2t_usr_dir)
  t2t_trainer.maybe_log_registry_and_exit()

  if FLAGS.cloud_mlengine:
    return cloud_mlengine.launch()

  if FLAGS.generate_data:
    t2t_trainer.generate_data()

  if cloud_mlengine.job_dir():
    FLAGS.output_dir = cloud_mlengine.job_dir()

  if argv:
    t2t_trainer.set_hparams_from_args(argv[1:])

  hparams.add_hparam("teacher_dir", FLAGS.teacher_dir)
  hparams.add_hparam("student_dir", FLAGS.student_dir)
  hparams.distill_phase = "distill"
  exp_fn = t2t_trainer.create_experiment_fn()
  exp = exp_fn(run_config, hparams)
  return exp 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:28,代碼來源:t2t_distill.py

示例10: main

# 需要導入模塊: from tensor2tensor.utils import usr_dir [as 別名]
# 或者: from tensor2tensor.utils.usr_dir import import_usr_dir [as 別名]
def main(_):
  tf.logging.set_verbosity(tf.logging.INFO)
  trainer_lib.set_random_seed(FLAGS.random_seed)
  usr_dir.import_usr_dir(FLAGS.t2t_usr_dir)

  hparams = trainer_lib.create_hparams(
      FLAGS.hparams_set, FLAGS.hparams, data_dir=FLAGS.data_dir,
      problem_name=FLAGS.problem)

  # set appropriate dataset-split, if flags.eval_use_test_set.
  dataset_split = "test" if FLAGS.eval_use_test_set else None
  dataset_kwargs = {"dataset_split": dataset_split}
  eval_input_fn = hparams.problem.make_estimator_input_fn(
      tf.estimator.ModeKeys.EVAL, hparams, dataset_kwargs=dataset_kwargs)
  config = t2t_trainer.create_run_config(hparams)

  # summary-hook in tf.estimator.EstimatorSpec requires
  # hparams.model_dir to be set.
  hparams.add_hparam("model_dir", config.model_dir)

  estimator = trainer_lib.create_estimator(
      FLAGS.model, hparams, config, use_tpu=FLAGS.use_tpu)
  ckpt_iter = trainer_lib.next_checkpoint(
      hparams.model_dir, FLAGS.eval_timeout_mins)
  for ckpt_path in ckpt_iter:
    predictions = estimator.evaluate(
        eval_input_fn, steps=FLAGS.eval_steps, checkpoint_path=ckpt_path)
    tf.logging.info(predictions) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:30,代碼來源:t2t_eval.py

示例11: main

# 需要導入模塊: from tensor2tensor.utils import usr_dir [as 別名]
# 或者: from tensor2tensor.utils.usr_dir import import_usr_dir [as 別名]
def main(_):
  tf.logging.set_verbosity(tf.logging.INFO)
  trainer_lib.set_random_seed(FLAGS.random_seed)
  usr_dir.import_usr_dir(FLAGS.t2t_usr_dir)


  if FLAGS.score_file:
    filename = os.path.expanduser(FLAGS.score_file)
    if not tf.gfile.Exists(filename):
      raise ValueError("The file to score doesn't exist: %s" % filename)
    results = score_file(filename)
    if not FLAGS.decode_to_file:
      raise ValueError("To score a file, specify --decode_to_file for results.")
    write_file = tf.gfile.Open(os.path.expanduser(FLAGS.decode_to_file), "w")
    for score in results:
      write_file.write("%.6f\n" % score)
    write_file.close()
    return

  hp = create_hparams()
  decode_hp = create_decode_hparams()
  run_config = t2t_trainer.create_run_config(hp)
  if FLAGS.disable_grappler_optimizations:
    run_config.session_config.graph_options.rewrite_options.disable_meta_optimizer = True

  # summary-hook in tf.estimator.EstimatorSpec requires
  # hparams.model_dir to be set.
  hp.add_hparam("model_dir", run_config.model_dir)

  estimator = trainer_lib.create_estimator(
      FLAGS.model,
      hp,
      run_config,
      decode_hparams=decode_hp,
      use_tpu=FLAGS.use_tpu)

  decode(estimator, hp, decode_hp) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:39,代碼來源:t2t_decoder.py

示例12: main

# 需要導入模塊: from tensor2tensor.utils import usr_dir [as 別名]
# 或者: from tensor2tensor.utils.usr_dir import import_usr_dir [as 別名]
def main(_):
  tf.logging.set_verbosity(tf.logging.INFO)
  trainer_lib.set_random_seed(FLAGS.random_seed)
  usr_dir.import_usr_dir(FLAGS.t2t_usr_dir)

  if FLAGS.checkpoint_path:
    checkpoint_path = FLAGS.checkpoint_path
    ckpt_dir = os.path.dirname(checkpoint_path)
  else:
    ckpt_dir = os.path.expanduser(FLAGS.output_dir)
    checkpoint_path = tf.train.latest_checkpoint(ckpt_dir)

  hparams = create_hparams()
  hparams.no_data_parallelism = True  # To clear the devices
  problem = hparams.problem
  decode_hparams = decoding.decode_hparams(FLAGS.decode_hparams)

  export_dir = FLAGS.export_dir or os.path.join(ckpt_dir, "export")

  if FLAGS.export_as_tfhub:
    checkpoint_path = tf.train.latest_checkpoint(ckpt_dir)
    export_as_tfhub_module(FLAGS.model, hparams, decode_hparams, problem,
                           checkpoint_path, export_dir)
    return

  run_config = t2t_trainer.create_run_config(hparams)

  estimator = create_estimator(run_config, hparams)

  exporter = tf.estimator.FinalExporter(
      "exporter",
      lambda: problem.serving_input_fn(hparams, decode_hparams, FLAGS.use_tpu),
      as_text=FLAGS.as_text)

  exporter.export(
      estimator,
      export_dir,
      checkpoint_path=checkpoint_path,
      eval_result=None,
      is_the_final_export=True) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:42,代碼來源:export.py

示例13: main

# 需要導入模塊: from tensor2tensor.utils import usr_dir [as 別名]
# 或者: from tensor2tensor.utils.usr_dir import import_usr_dir [as 別名]
def main(_):
  tf.logging.set_verbosity(tf.logging.INFO)
  trainer_lib.set_random_seed(FLAGS.random_seed)
  usr_dir.import_usr_dir(FLAGS.t2t_usr_dir)


  if FLAGS.score_file:
    filename = os.path.expanduser(FLAGS.score_file)
    if not tf.gfile.Exists(filename):
      raise ValueError("The file to score doesn't exist: %s" % filename)
    results = score_file(filename)
    if not FLAGS.decode_to_file:
      raise ValueError("To score a file, specify --decode_to_file for results.")
    write_file = tf.gfile.Open(os.path.expanduser(FLAGS.decode_to_file), "w")
    for score in results:
      write_file.write("%.6f\n" % score)
    write_file.close()
    return

  hp = create_hparams()
  decode_hp = create_decode_hparams()

  estimator = trainer_lib.create_estimator(
      FLAGS.model,
      hp,
      t2t_trainer.create_run_config(hp),
      decode_hparams=decode_hp,
      use_tpu=FLAGS.use_tpu)

  decode(estimator, hp, decode_hp) 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:32,代碼來源:t2t_decoder.py

示例14: main

# 需要導入模塊: from tensor2tensor.utils import usr_dir [as 別名]
# 或者: from tensor2tensor.utils.usr_dir import import_usr_dir [as 別名]
def main(_):
  tf.logging.set_verbosity(tf.logging.INFO)
  trainer_lib.set_random_seed(FLAGS.random_seed)
  usr_dir.import_usr_dir(FLAGS.t2t_usr_dir)

  if FLAGS.checkpoint_path:
    checkpoint_path = FLAGS.checkpoint_path
    ckpt_dir = os.path.dirname(checkpoint_path)
  else:
    ckpt_dir = os.path.expanduser(FLAGS.output_dir)
    checkpoint_path = tf.train.latest_checkpoint(ckpt_dir)

  hparams = create_hparams()
  hparams.no_data_parallelism = True  # To clear the devices
  problem = hparams.problem

  export_dir = FLAGS.export_dir or os.path.join(ckpt_dir, "export")

  if FLAGS.export_as_tfhub:
    checkpoint_path = tf.train.latest_checkpoint(ckpt_dir)
    decode_hparams = decoding.decode_hparams(FLAGS.decode_hparams)
    export_as_tfhub_module(FLAGS.model, hparams, decode_hparams, problem,
                           checkpoint_path, export_dir)
    return

  run_config = t2t_trainer.create_run_config(hparams)

  estimator = create_estimator(run_config, hparams)

  exporter = tf.estimator.FinalExporter(
      "exporter", lambda: problem.serving_input_fn(hparams), as_text=True)

  exporter.export(
      estimator,
      export_dir,
      checkpoint_path=checkpoint_path,
      eval_result=None,
      is_the_final_export=True) 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:40,代碼來源:export.py

示例15: main

# 需要導入模塊: from tensor2tensor.utils import usr_dir [as 別名]
# 或者: from tensor2tensor.utils.usr_dir import import_usr_dir [as 別名]
def main(argv):
  tf.logging.set_verbosity(tf.logging.INFO)

  usr_dir.import_usr_dir(FLAGS.t2t_usr_dir)

  # If we just have to print the registry, do that and exit early.
  maybe_log_registry_and_exit()

  # Create HParams.
  if argv:
    set_hparams_from_args(argv[1:])
  hparams = create_hparams()

  if FLAGS.schedule == "train" or FLAGS.schedule == "train_eval_and_decode":
    mlperf_log.transformer_print(key=mlperf_log.RUN_START, hparams=hparams)
  if FLAGS.schedule == "run_std_server":
    run_std_server()
  mlperf_log.transformer_print(
      key=mlperf_log.RUN_SET_RANDOM_SEED, value=FLAGS.random_seed,
      hparams=hparams)
  trainer_lib.set_random_seed(FLAGS.random_seed)

  if FLAGS.cloud_mlengine:
    cloud_mlengine.launch()
    return

  if FLAGS.generate_data:
    generate_data()

  if cloud_mlengine.job_dir():
    FLAGS.output_dir = cloud_mlengine.job_dir()

  exp_fn = create_experiment_fn()
  exp = exp_fn(create_run_config(hparams), hparams)
  if is_chief():
    save_metadata(hparams)
  execute_schedule(exp)
  if FLAGS.schedule != "train":
    mlperf_log.transformer_print(key=mlperf_log.RUN_FINAL,
                                 hparams=hparams) 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:42,代碼來源:t2t_trainer.py


注:本文中的tensor2tensor.utils.usr_dir.import_usr_dir方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。