本文整理匯總了Python中tensor2tensor.models.transformer.transformer_tiny方法的典型用法代碼示例。如果您正苦於以下問題:Python transformer.transformer_tiny方法的具體用法?Python transformer.transformer_tiny怎麽用?Python transformer.transformer_tiny使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensor2tensor.models.transformer
的用法示例。
在下文中一共展示了transformer.transformer_tiny方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: _create_greedy_infer_model
# 需要導入模塊: from tensor2tensor.models import transformer [as 別名]
# 或者: from tensor2tensor.models.transformer import transformer_tiny [as 別名]
def _create_greedy_infer_model(self):
"""Creates model for greedy inference testing.
Returns:
model: A t2t model.
features: An map of string to tensor.
"""
model, features = get_model(transformer.transformer_tiny())
out_logits, _ = model(features)
out_logits = tf.squeeze(out_logits, axis=[2, 3])
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=tf.reshape(out_logits, [-1, VOCAB_SIZE]),
labels=tf.reshape(features["targets"], [-1]))
loss = tf.reduce_mean(loss)
apply_grad = tf.train.AdamOptimizer(0.001).minimize(loss)
with self.test_session():
tf.global_variables_initializer().run()
for _ in range(10):
apply_grad.run()
model.set_mode(tf.estimator.ModeKeys.PREDICT)
return model, features
示例2: universal_transformer_tiny
# 需要導入模塊: from tensor2tensor.models import transformer [as 別名]
# 或者: from tensor2tensor.models.transformer import transformer_tiny [as 別名]
def universal_transformer_tiny():
hparams = transformer.transformer_tiny()
hparams = update_hparams_for_universal_transformer(hparams)
hparams.num_rec_steps = 8
return hparams
示例3: get_model
# 需要導入模塊: from tensor2tensor.models import transformer [as 別名]
# 或者: from tensor2tensor.models.transformer import transformer_tiny [as 別名]
def get_model(hparams=None, mode=tf.estimator.ModeKeys.TRAIN,
has_input=True, model_cls=transformer.Transformer):
if hparams is None:
hparams = transformer.transformer_tiny()
hparams.hidden_size = 8
hparams.filter_size = 32
hparams.num_heads = 1
hparams.layer_prepostprocess_dropout = 0.0
p_hparams = problem_hparams.test_problem_hparams(VOCAB_SIZE, VOCAB_SIZE)
if not has_input:
p_hparams.input_modality = {}
hparams.problem_hparams = p_hparams
inputs = -1 + np.random.random_integers(
VOCAB_SIZE, size=(BATCH_SIZE, INPUT_LENGTH, 1, 1))
targets = -1 + np.random.random_integers(
VOCAB_SIZE, size=(BATCH_SIZE, TARGET_LENGTH, 1, 1))
features = {
"targets": tf.constant(targets, dtype=tf.int32, name="targets"),
"target_space_id": tf.constant(1, dtype=tf.int32)
}
if has_input:
features["inputs"] = tf.constant(inputs, dtype=tf.int32, name="inputs")
return model_cls(hparams, mode, p_hparams), features
示例4: transformer_aux_tiny
# 需要導入模塊: from tensor2tensor.models import transformer [as 別名]
# 或者: from tensor2tensor.models.transformer import transformer_tiny [as 別名]
def transformer_aux_tiny():
"""Set of hyperparameters."""
hparams = transformer.transformer_tiny()
hparams.shared_embedding_and_softmax_weights = False
hparams.add_hparam("shift_values", "1,2")
return hparams
示例5: transformer_tiny_bs1
# 需要導入模塊: from tensor2tensor.models import transformer [as 別名]
# 或者: from tensor2tensor.models.transformer import transformer_tiny [as 別名]
def transformer_tiny_bs1():
hparams = transformer.transformer_tiny()
hparams.add_hparam("block_size", 1)
return hparams
示例6: transformer_tiny_bs2
# 需要導入模塊: from tensor2tensor.models import transformer [as 別名]
# 或者: from tensor2tensor.models.transformer import transformer_tiny [as 別名]
def transformer_tiny_bs2():
hparams = transformer.transformer_tiny()
hparams.add_hparam("block_size", 2)
return hparams
示例7: transformer_tiny_bs3
# 需要導入模塊: from tensor2tensor.models import transformer [as 別名]
# 或者: from tensor2tensor.models.transformer import transformer_tiny [as 別名]
def transformer_tiny_bs3():
hparams = transformer.transformer_tiny()
hparams.add_hparam("block_size", 3)
return hparams
示例8: testEvolvedTransformer
# 需要導入模塊: from tensor2tensor.models import transformer [as 別名]
# 或者: from tensor2tensor.models.transformer import transformer_tiny [as 別名]
def testEvolvedTransformer(self):
model, features = get_model(hparams=transformer.transformer_tiny())
logits, _ = model(features)
with self.test_session() as session:
session.run(tf.global_variables_initializer())
res = session.run(logits)
self.assertEqual(res.shape, (BATCH_SIZE, TARGET_LENGTH, 1, 1, VOCAB_SIZE))
示例9: testSlowVsFast
# 需要導入模塊: from tensor2tensor.models import transformer [as 別名]
# 或者: from tensor2tensor.models.transformer import transformer_tiny [as 別名]
def testSlowVsFast(self):
tf.set_random_seed(1234)
model, features = get_model(transformer.transformer_tiny())
decode_length = DECODE_LENGTH
out_logits, _ = model(features)
out_logits = tf.squeeze(out_logits, axis=[2, 3])
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=tf.reshape(out_logits, [-1, VOCAB_SIZE]),
labels=tf.reshape(features["targets"], [-1]))
loss = tf.reduce_mean(loss)
apply_grad = tf.train.AdamOptimizer(0.001).minimize(loss)
with self.test_session():
tf.global_variables_initializer().run()
for _ in range(10):
apply_grad.run()
model.set_mode(tf.estimator.ModeKeys.PREDICT)
with tf.variable_scope(tf.get_variable_scope(), reuse=True):
greedy_result = model._slow_greedy_infer(features,
decode_length)["outputs"]
greedy_result = tf.squeeze(greedy_result, axis=[2, 3])
fast_result = model._greedy_infer(features, decode_length)["outputs"]
with self.test_session():
greedy_res = greedy_result.eval()
fast_res = fast_result.eval()
self.assertEqual(fast_res.shape, (BATCH_SIZE, INPUT_LENGTH + decode_length))
self.assertAllClose(greedy_res, fast_res)
示例10: testSlowVsFastNoInput
# 需要導入模塊: from tensor2tensor.models import transformer [as 別名]
# 或者: from tensor2tensor.models.transformer import transformer_tiny [as 別名]
def testSlowVsFastNoInput(self):
model, features = get_model(transformer.transformer_tiny(), has_input=False)
decode_length = DECODE_LENGTH
out_logits, _ = model(features)
out_logits = tf.squeeze(out_logits, axis=[2, 3])
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=tf.reshape(out_logits, [-1, VOCAB_SIZE]),
labels=tf.reshape(features["targets"], [-1]))
loss = tf.reduce_mean(loss)
apply_grad = tf.train.AdamOptimizer(0.001).minimize(loss)
with self.test_session():
tf.global_variables_initializer().run()
for _ in range(10):
apply_grad.run()
model.set_mode(tf.estimator.ModeKeys.PREDICT)
with tf.variable_scope(tf.get_variable_scope(), reuse=True):
slow_result = model._slow_greedy_infer(features, decode_length)["outputs"]
slow_result = tf.squeeze(slow_result, axis=[2, 3])
fast_result = model._greedy_infer(features, decode_length)["outputs"]
with self.test_session():
slow_res = slow_result.eval()
fast_res = fast_result.eval()
self.assertEqual(slow_res.shape, (BATCH_SIZE, decode_length))
self.assertAllClose(slow_res, fast_res)
示例11: testBeamVsFast
# 需要導入模塊: from tensor2tensor.models import transformer [as 別名]
# 或者: from tensor2tensor.models.transformer import transformer_tiny [as 別名]
def testBeamVsFast(self):
model, features = get_model(transformer.transformer_tiny())
decode_length = DECODE_LENGTH
out_logits, _ = model(features)
out_logits = tf.squeeze(out_logits, axis=[2, 3])
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=tf.reshape(out_logits, [-1, VOCAB_SIZE]),
labels=tf.reshape(features["targets"], [-1]))
loss = tf.reduce_mean(loss)
apply_grad = tf.train.AdamOptimizer(0.001).minimize(loss)
with self.test_session():
tf.global_variables_initializer().run()
for _ in range(10):
apply_grad.run()
model.set_mode(tf.estimator.ModeKeys.PREDICT)
with tf.variable_scope(tf.get_variable_scope(), reuse=True):
beam_result = model._beam_decode_slow(
features, decode_length, beam_size=4, top_beams=1,
alpha=1.0)["outputs"]
fast_result = model._beam_decode(
features, decode_length, beam_size=4, top_beams=1,
alpha=1.0)["outputs"]
with self.test_session():
beam_res = beam_result.eval()
fast_res = fast_result.eval()
self.assertAllClose(beam_res, fast_res)
示例12: testSlowVsFast
# 需要導入模塊: from tensor2tensor.models import transformer [as 別名]
# 或者: from tensor2tensor.models.transformer import transformer_tiny [as 別名]
def testSlowVsFast(self):
model, features = get_model(transformer.transformer_tiny())
decode_length = DECODE_LENGTH
out_logits, _ = model(features)
out_logits = tf.squeeze(out_logits, axis=[2, 3])
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=tf.reshape(out_logits, [-1, VOCAB_SIZE]),
labels=tf.reshape(features["targets"], [-1]))
loss = tf.reduce_mean(loss)
apply_grad = tf.train.AdamOptimizer(0.001).minimize(loss)
with self.test_session():
tf.global_variables_initializer().run()
for _ in range(10):
apply_grad.run()
model.set_mode(tf.estimator.ModeKeys.PREDICT)
with tf.variable_scope(tf.get_variable_scope(), reuse=True):
greedy_result = model._slow_greedy_infer(
features, decode_length)["outputs"]
greedy_result = tf.squeeze(greedy_result, axis=[2, 3])
fast_result = model._greedy_infer(features, decode_length)["outputs"]
with self.test_session():
greedy_res = greedy_result.eval()
fast_res = fast_result.eval()
self.assertEqual(fast_res.shape, (BATCH_SIZE, INPUT_LENGTH + decode_length))
self.assertAllClose(greedy_res, fast_res)
示例13: testSlowVsFastNoInput
# 需要導入模塊: from tensor2tensor.models import transformer [as 別名]
# 或者: from tensor2tensor.models.transformer import transformer_tiny [as 別名]
def testSlowVsFastNoInput(self):
model, features = get_model(
transformer.transformer_tiny(), has_input=False)
decode_length = DECODE_LENGTH
out_logits, _ = model(features)
out_logits = tf.squeeze(out_logits, axis=[2, 3])
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=tf.reshape(out_logits, [-1, VOCAB_SIZE]),
labels=tf.reshape(features["targets"], [-1]))
loss = tf.reduce_mean(loss)
apply_grad = tf.train.AdamOptimizer(0.001).minimize(loss)
with self.test_session():
tf.global_variables_initializer().run()
for _ in range(10):
apply_grad.run()
model.set_mode(tf.estimator.ModeKeys.PREDICT)
with tf.variable_scope(tf.get_variable_scope(), reuse=True):
slow_result = model._slow_greedy_infer(
features, decode_length)["outputs"]
slow_result = tf.squeeze(slow_result, axis=[2, 3])
fast_result = model._greedy_infer(features, decode_length)["outputs"]
with self.test_session():
slow_res = slow_result.eval()
fast_res = fast_result.eval()
self.assertEqual(slow_res.shape, (BATCH_SIZE, decode_length))
self.assertAllClose(slow_res, fast_res)
示例14: testBeamVsFast
# 需要導入模塊: from tensor2tensor.models import transformer [as 別名]
# 或者: from tensor2tensor.models.transformer import transformer_tiny [as 別名]
def testBeamVsFast(self):
model, features = get_model(transformer.transformer_tiny())
decode_length = DECODE_LENGTH
out_logits, _ = model(features)
out_logits = tf.squeeze(out_logits, axis=[2, 3])
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=tf.reshape(out_logits, [-1, VOCAB_SIZE]),
labels=tf.reshape(features["targets"], [-1]))
loss = tf.reduce_mean(loss)
apply_grad = tf.train.AdamOptimizer(0.001).minimize(loss)
with self.test_session():
tf.global_variables_initializer().run()
for _ in range(10):
apply_grad.run()
model.set_mode(tf.estimator.ModeKeys.PREDICT)
with tf.variable_scope(tf.get_variable_scope(), reuse=True):
beam_result = model._beam_decode_slow(
features,
decode_length,
beam_size=4,
top_beams=1,
alpha=1.0)["outputs"]
fast_result = model._beam_decode(
features,
decode_length,
beam_size=4,
top_beams=1,
alpha=1.0)["outputs"]
with self.test_session():
beam_res = beam_result.eval()
fast_res = fast_result.eval()
self.assertAllClose(beam_res, fast_res)
示例15: get_model
# 需要導入模塊: from tensor2tensor.models import transformer [as 別名]
# 或者: from tensor2tensor.models.transformer import transformer_tiny [as 別名]
def get_model(hparams=None, mode=tf.estimator.ModeKeys.TRAIN,
has_input=True, model_cls=transformer.Transformer):
if hparams is None:
hparams = transformer.transformer_tiny()
hparams.hidden_size = 8
hparams.filter_size = 32
hparams.num_heads = 1
hparams.layer_prepostprocess_dropout = 0.0
p_hparams = problem_hparams.test_problem_hparams(VOCAB_SIZE,
VOCAB_SIZE,
hparams)
if not has_input:
del p_hparams.modality["inputs"]
hparams.problem_hparams = p_hparams
inputs = np.random.randint(
VOCAB_SIZE, size=(BATCH_SIZE, INPUT_LENGTH, 1, 1))
targets = np.random.randint(
VOCAB_SIZE, size=(BATCH_SIZE, TARGET_LENGTH, 1, 1))
features = {
"targets": tf.constant(targets, dtype=tf.int32, name="targets"),
"target_space_id": tf.constant(1, dtype=tf.int32)
}
if has_input:
features["inputs"] = tf.constant(inputs, dtype=tf.int32, name="inputs")
return model_cls(hparams, mode, p_hparams), features