當前位置: 首頁>>代碼示例>>Python>>正文


Python transformer.transformer_prepare_encoder方法代碼示例

本文整理匯總了Python中tensor2tensor.models.transformer.transformer_prepare_encoder方法的典型用法代碼示例。如果您正苦於以下問題:Python transformer.transformer_prepare_encoder方法的具體用法?Python transformer.transformer_prepare_encoder怎麽用?Python transformer.transformer_prepare_encoder使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensor2tensor.models.transformer的用法示例。


在下文中一共展示了transformer.transformer_prepare_encoder方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _prepare_encoder

# 需要導入模塊: from tensor2tensor.models import transformer [as 別名]
# 或者: from tensor2tensor.models.transformer import transformer_prepare_encoder [as 別名]
def _prepare_encoder(self, inputs, target_space):
    """Process the transformer encoder inputs."""
    inputs = common_layers.flatten4d3d(inputs)

    output = transformer.transformer_prepare_encoder(
        inputs,
        target_space,
        self._hparams,
        features=None,
    )
    enco_input, enco_self_att_bias, enco_deco_att_bias = output

    enco_input = tf.nn.dropout(
        enco_input, 1.0 - self._hparams.layer_prepostprocess_dropout)

    return enco_input, enco_self_att_bias, enco_deco_att_bias 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:18,代碼來源:transformer_moe.py

示例2: transformer_text_encoder

# 需要導入模塊: from tensor2tensor.models import transformer [as 別名]
# 或者: from tensor2tensor.models.transformer import transformer_prepare_encoder [as 別名]
def transformer_text_encoder(x,
                             space_id,
                             hparams,
                             name="transformer_text_encoder"):
  """Transformer text encoder over inputs with unmasked full attention.

  Args:
    x: Tensor of shape [batch, length, 1, hparams.hidden_size].
    space_id: int, id.
    hparams: tf.contrib.training.HParams.
    name: string, variable scope.

  Returns:
    encoder_output: Tensor of shape [batch, length, hparams.hidden_size].
    ed: Tensor of shape [batch, 1, 1, length]. Encoder-decoder attention bias
      for any padded tokens.
  """
  with tf.variable_scope(name):
    x = common_layers.flatten4d3d(x)
    (encoder_input, encoder_self_attention_bias,
     ed) = transformer.transformer_prepare_encoder(x, space_id, hparams)
    encoder_input = tf.nn.dropout(encoder_input, 1.0 - hparams.dropout)
    encoder_output = transformer.transformer_encoder(
        encoder_input, encoder_self_attention_bias, hparams)
    return encoder_output, ed 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:27,代碼來源:latent_layers.py

示例3: encode

# 需要導入模塊: from tensor2tensor.models import transformer [as 別名]
# 或者: from tensor2tensor.models.transformer import transformer_prepare_encoder [as 別名]
def encode(self, features, input_key):
    hparams = self._hparams
    inputs = common_layers.flatten4d3d(features[input_key])

    (encoder_input, encoder_self_attention_bias, _) = (
        transformer.transformer_prepare_encoder(inputs, problem.SpaceID.EN_TOK,
                                                hparams))

    encoder_input = tf.nn.dropout(encoder_input,
                                  1.0 - hparams.layer_prepostprocess_dropout)
    encoder_output = transformer.transformer_encoder(
        encoder_input,
        encoder_self_attention_bias,
        hparams,
        nonpadding=transformer.features_to_nonpadding(features, input_key))

    encoder_output = tf.reduce_mean(encoder_output, axis=1)

    return encoder_output 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:21,代碼來源:similarity_transformer.py

示例4: universal_transformer_encoder

# 需要導入模塊: from tensor2tensor.models import transformer [as 別名]
# 或者: from tensor2tensor.models.transformer import transformer_prepare_encoder [as 別名]
def universal_transformer_encoder(inputs, target_space, 
				hparams, features=None, make_image_summary=False):
    
    encoder_input, self_attention_bias, encoder_decoder_attention_bias = (
        transformer.transformer_prepare_encoder(
            inputs, target_space, hparams, features=features))

    encoder_input = tf.nn.dropout(encoder_input,
                                  1.0 - hparams.layer_prepostprocess_dropout)

    [encoder_output, 
    encoder_extra_output] = universal_transformer_util.universal_transformer_encoder(
        encoder_input,
        self_attention_bias,
        hparams,
        nonpadding=transformer.features_to_nonpadding(features, "inputs"),
        save_weights_to=None,
        make_image_summary=make_image_summary)

    # encoder_output = tf.expand_dims(encoder_output, 2)

    return encoder_output 
開發者ID:yyht,項目名稱:BERT,代碼行數:24,代碼來源:universal_transformer_utils.py

示例5: transformer_encoder

# 需要導入模塊: from tensor2tensor.models import transformer [as 別名]
# 或者: from tensor2tensor.models.transformer import transformer_prepare_encoder [as 別名]
def transformer_encoder(inputs, target_space, hparams, features=None, losses=None):
    
    encoder_input, self_attention_bias, encoder_decoder_attention_bias = (
        transformer.transformer_prepare_encoder(
            inputs, target_space, hparams, features=features))

    encoder_input = tf.nn.dropout(encoder_input,
                                  1.0 - hparams.layer_prepostprocess_dropout)

    encoder_output = transformer.transformer_encoder(
        encoder_input,
        self_attention_bias,
        hparams,
        nonpadding=transformer.features_to_nonpadding(features, "inputs"),
        save_weights_to=None,
        losses=losses)

    # encoder_output = tf.expand_dims(encoder_output, 2)

    return encoder_output 
開發者ID:yyht,項目名稱:BERT,代碼行數:22,代碼來源:base_transformer_utils.py

示例6: body

# 需要導入模塊: from tensor2tensor.models import transformer [as 別名]
# 或者: from tensor2tensor.models.transformer import transformer_prepare_encoder [as 別名]
def body(self, features):
    hparams = self._hparams
    targets = features["targets"]
    inputs = features["inputs"]
    target_space = features["target_space_id"]

    inputs = common_layers.flatten4d3d(inputs)
    targets = common_layers.flatten4d3d(targets)

    (encoder_input, encoder_self_attention_bias,
     encoder_decoder_attention_bias) = (transformer.transformer_prepare_encoder(
         inputs, target_space, hparams))
    (decoder_input,
     decoder_self_attention_bias) = transformer.transformer_prepare_decoder(
         targets, hparams)

    encoder_input = tf.nn.dropout(encoder_input,
                                  1.0 - hparams.layer_prepostprocess_dropout)
    decoder_input = tf.nn.dropout(decoder_input,
                                  1.0 - hparams.layer_prepostprocess_dropout)
    encoder_output = transformer_revnet_encoder(
        encoder_input, encoder_self_attention_bias, hparams)

    decoder_output = transformer_revnet_decoder(
        decoder_input, encoder_output, decoder_self_attention_bias,
        encoder_decoder_attention_bias, hparams)
    decoder_output = tf.expand_dims(decoder_output, 2)

    return decoder_output 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:31,代碼來源:transformer_revnet.py

示例7: encode

# 需要導入模塊: from tensor2tensor.models import transformer [as 別名]
# 或者: from tensor2tensor.models.transformer import transformer_prepare_encoder [as 別名]
def encode(x, x_space, hparams, name):
  """Transformer preparations and encoder."""
  with tf.variable_scope(name):
    (encoder_input, encoder_self_attention_bias,
     ed) = transformer.transformer_prepare_encoder(x, x_space, hparams)
    encoder_input = tf.nn.dropout(encoder_input, 1.0 - hparams.dropout)
    return transformer.transformer_encoder(
        encoder_input, encoder_self_attention_bias, hparams), ed 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:10,代碼來源:transformer_vae.py

示例8: encode

# 需要導入模塊: from tensor2tensor.models import transformer [as 別名]
# 或者: from tensor2tensor.models.transformer import transformer_prepare_encoder [as 別名]
def encode(self, inputs, target_space, hparams, features=None, losses=None):
    """Encode transformer inputs.

    Args:
      inputs: Transformer inputs [batch_size, input_length, input_height,
        hidden_dim] which will be flattened along the two spatial dimensions.
      target_space: scalar, target space ID.
      hparams: hyperparmeters for model.
      features: optionally pass the entire features dictionary as well.
        This is needed now for "packed" datasets.
      losses: Unused.

    Returns:
      Tuple of:
          encoder_output: Encoder representation.
              [batch_size, input_length, hidden_dim]
          encoder_extra_output: which is extra encoder output used in some
            variants of the model (e.g. in ACT, to pass the ponder-time to body)
    """
    del losses
    inputs = common_layers.flatten4d3d(inputs)

    (encoder_input, self_attention_bias, _) = (
        transformer.transformer_prepare_encoder(inputs, target_space, hparams))

    encoder_input = tf.nn.dropout(encoder_input,
                                  1.0 - hparams.layer_prepostprocess_dropout)

    (encoder_output, encoder_extra_output) = (
        universal_transformer_util.universal_transformer_encoder(
            encoder_input,
            self_attention_bias,
            hparams,
            nonpadding=transformer.features_to_nonpadding(features, "inputs"),
            save_weights_to=self.attention_weights))

    return encoder_output, encoder_extra_output 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:39,代碼來源:universal_transformer.py

示例9: encode

# 需要導入模塊: from tensor2tensor.models import transformer [as 別名]
# 或者: from tensor2tensor.models.transformer import transformer_prepare_encoder [as 別名]
def encode(self, inputs, target_space, hparams, features=None, losses=None):
    """Encode Universal Transformer inputs.

    It is similar to "transformer.encode", but it uses
    "universal_transformer_util.universal_transformer_encoder" instead of
    "transformer.transformer_encoder".

    Args:
      inputs: Transformer inputs [batch_size, input_length, input_height,
        hidden_dim] which will be flattened along the two spatial dimensions.
      target_space: scalar, target space ID.
      hparams: hyperparmeters for model.
      features: optionally pass the entire features dictionary as well.
        This is needed now for "packed" datasets.
      losses: Unused.

    Returns:
      Tuple of:
          encoder_output: Encoder representation.
              [batch_size, input_length, hidden_dim]
          encoder_decoder_attention_bias: Bias and mask weights for
              encoder-decoder attention. [batch_size, input_length]
          encoder_extra_output: which is extra encoder output used in some
            variants of the model (e.g. in ACT, to pass the ponder-time to body)
    """
    del losses

    inputs = common_layers.flatten4d3d(inputs)

    encoder_input, self_attention_bias, encoder_decoder_attention_bias = (
        transformer.transformer_prepare_encoder(
            inputs, target_space, hparams, features=features))

    encoder_input = tf.nn.dropout(encoder_input,
                                  1.0 - hparams.layer_prepostprocess_dropout)

    (encoder_output, encoder_extra_output) = (
        universal_transformer_util.universal_transformer_encoder(
            encoder_input,
            self_attention_bias,
            hparams,
            nonpadding=transformer.features_to_nonpadding(features, "inputs"),
            save_weights_to=self.attention_weights))

    return encoder_output, encoder_decoder_attention_bias, encoder_extra_output 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:47,代碼來源:universal_transformer.py

示例10: encode

# 需要導入模塊: from tensor2tensor.models import transformer [as 別名]
# 或者: from tensor2tensor.models.transformer import transformer_prepare_encoder [as 別名]
def encode(self, inputs, target_space, hparams, features=None, losses=None):
    """Encode inputs using _encoder().

    This performs the same way as transformer.Transformer.encode with the
    encoder portion replaced with _encoder().

    Args:
      inputs: Input [batch_size, input_length, input_height, hidden_dim] tensor
        which will be flattened along the two spatial dimensions.
      target_space: scalar, target space ID.
      hparams: Hyperparmeters for model.
      features: Optionally pass the entire features dictionary as well. This is
        needed now for "packed" datasets.
      losses: Unused list of losses.

    Returns:
      Tuple of:
          encoder_output: Encoder representation.
              [batch_size, input_length, hidden_dim]
          encoder_decoder_attention_bias: Bias and mask weights for
              encodre-decoder attention. [batch_size, input_length]

    Raises:
      ValueError: If encoder type not found.
    """
    inputs = common_layers.flatten4d3d(inputs)

    encoder_input, self_attention_bias, encoder_decoder_attention_bias = (
        transformer.transformer_prepare_encoder(
            inputs, target_space, hparams, features=features))

    encoder_input = tf.nn.dropout(encoder_input,
                                  1.0 - hparams.layer_prepostprocess_dropout)

    encoder_output = self._encoder(
        encoder_input,
        self_attention_bias,
        hparams,
        nonpadding=transformer.features_to_nonpadding(features, "inputs"),
        save_weights_to=self.attention_weights)

    return encoder_output, encoder_decoder_attention_bias 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:44,代碼來源:nas_model.py


注:本文中的tensor2tensor.models.transformer.transformer_prepare_encoder方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。