當前位置: 首頁>>代碼示例>>Python>>正文


Python transformer.Transformer方法代碼示例

本文整理匯總了Python中tensor2tensor.models.transformer.Transformer方法的典型用法代碼示例。如果您正苦於以下問題:Python transformer.Transformer方法的具體用法?Python transformer.Transformer怎麽用?Python transformer.Transformer使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensor2tensor.models.transformer的用法示例。


在下文中一共展示了transformer.Transformer方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _beam_decode

# 需要導入模塊: from tensor2tensor.models import transformer [as 別名]
# 或者: from tensor2tensor.models.transformer import Transformer [as 別名]
def _beam_decode(self, features, decode_length, beam_size, top_beams, alpha):
    """Beam search decoding.

    Args:
      features: an map of string to `Tensor`
      decode_length: an integer.  How many additional timesteps to decode.
      beam_size: number of beams.
      top_beams: an integer. How many of the beams to return.
      alpha: Float that controls the length penalty. larger the alpha, stronger
        the preference for longer translations.

    Returns:
      A dict of decoding results {
          "outputs": integer `Tensor` of decoded ids of shape
              [batch_size, <= decode_length] if beam_size == 1 or
              [batch_size, top_beams, <= decode_length]
          "scores": decoding log probs from the beam search,
              None if using greedy decoding (beam_size=1)
      }
    """
    # Caching is not ebabled in Universal Transformer
    # TODO(dehghani): Support fast decoding for Universal Transformer
    return self._beam_decode_slow(features, decode_length, beam_size,
                                  top_beams, alpha) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:26,代碼來源:universal_transformer.py

示例2: testTransformerWithoutProblem

# 需要導入模塊: from tensor2tensor.models import transformer [as 別名]
# 或者: from tensor2tensor.models.transformer import Transformer [as 別名]
def testTransformerWithoutProblem(self):
    hparams = transformer.transformer_test()

    embedded_inputs = np.random.random_sample(
        (BATCH_SIZE, INPUT_LENGTH, 1, hparams.hidden_size))
    embedded_targets = np.random.random_sample(
        (BATCH_SIZE, TARGET_LENGTH, 1, hparams.hidden_size))

    transformed_features = {
        "inputs": tf.constant(embedded_inputs, dtype=tf.float32),
        "targets": tf.constant(embedded_targets, dtype=tf.float32)
    }

    model = transformer.Transformer(hparams)
    body_out, _ = model(transformed_features)

    self.assertAllEqual(
        body_out.get_shape().as_list(),
        [BATCH_SIZE, TARGET_LENGTH, 1, hparams.hidden_size]) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:21,代碼來源:transformer_test.py

示例3: testVarNames

# 需要導入模塊: from tensor2tensor.models import transformer [as 別名]
# 或者: from tensor2tensor.models.transformer import Transformer [as 別名]
def testVarNames(self):
    with tf.Graph().as_default():
      model, features = get_model(
          mode=tf.estimator.ModeKeys.PREDICT,
          model_cls=transformer.TransformerScorer)
      _ = model.infer(features)
      scorer_vars = [v.name for v in tf.global_variables()]

    with tf.Graph().as_default():
      model, features = get_model(
          mode=tf.estimator.ModeKeys.EVAL,
          model_cls=transformer.TransformerScorer)
      _ = model(features)
      scorer_eval_vars = [v.name for v in tf.global_variables()]

    with tf.Graph().as_default():
      model, features = get_model(
          mode=tf.estimator.ModeKeys.EVAL,
          model_cls=transformer.Transformer)
      _ = model(features)
      transformer_vars = [v.name for v in tf.global_variables()]

    self.assertEqual(sorted(scorer_vars), sorted(transformer_vars))
    self.assertEqual(sorted(scorer_eval_vars), sorted(transformer_vars)) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:26,代碼來源:transformer_test.py

示例4: add_evolved_transformer_hparams

# 需要導入模塊: from tensor2tensor.models import transformer [as 別名]
# 或者: from tensor2tensor.models.transformer import Transformer [as 別名]
def add_evolved_transformer_hparams(hparams):
  """Add Evolved Transformer hparams.

  Note: These are for the Adam optimizer, not the Adafactor optimizer used in
  the paper.

  Args:
    hparams: Current hparams.

  Returns:
    hparams updated with Evolved Transformer values.
  """
  # Evolved Transformer "layers" are twice as deep as Transformer, so roughly
  # halve the number that we use. These numbers are taken from
  # arxiv.org/abs/1901.11117 .
  hparams.num_encoder_layers = 3
  hparams.num_decoder_layers = 4

  # Learning rate and decay scheme that mimics the transformer Adam config,
  # but with cosine decay instead of rsqrt.
  hparams.learning_rate_constant /= hparams.learning_rate_warmup_steps ** 0.5
  hparams.learning_rate_schedule = (
      "constant*linear_warmup*single_cycle_cos_decay*rsqrt_hidden_size")
  return hparams 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:26,代碼來源:evolved_transformer.py

示例5: transformer_revnet_big

# 需要導入模塊: from tensor2tensor.models import transformer [as 別名]
# 或者: from tensor2tensor.models.transformer import Transformer [as 別名]
def transformer_revnet_big():
  """Base hparams for TransformerRevnet."""
  hparams = transformer_revnet_base()

  # The TransformerRevnet uses significantly less memory than the Transformer.
  # Increase batch size and model size.
  hparams.batch_size *= 2
  hparams.hidden_size *= 2
  hparams.num_heads *= 2
  hparams.num_hidden_layers += 1
  return hparams 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:13,代碼來源:transformer_revnet.py

示例6: encode

# 需要導入模塊: from tensor2tensor.models import transformer [as 別名]
# 或者: from tensor2tensor.models.transformer import Transformer [as 別名]
def encode(self, inputs, target_space, hparams, features=None, losses=None):
    """Encode transformer inputs.

    Args:
      inputs: Transformer inputs [batch_size, input_length, input_height,
        hidden_dim] which will be flattened along the two spatial dimensions.
      target_space: scalar, target space ID.
      hparams: hyperparmeters for model.
      features: optionally pass the entire features dictionary as well.
        This is needed now for "packed" datasets.
      losses: Unused.

    Returns:
      Tuple of:
          encoder_output: Encoder representation.
              [batch_size, input_length, hidden_dim]
          encoder_extra_output: which is extra encoder output used in some
            variants of the model (e.g. in ACT, to pass the ponder-time to body)
    """
    del losses
    inputs = common_layers.flatten4d3d(inputs)

    (encoder_input, self_attention_bias, _) = (
        transformer.transformer_prepare_encoder(inputs, target_space, hparams))

    encoder_input = tf.nn.dropout(encoder_input,
                                  1.0 - hparams.layer_prepostprocess_dropout)

    (encoder_output, encoder_extra_output) = (
        universal_transformer_util.universal_transformer_encoder(
            encoder_input,
            self_attention_bias,
            hparams,
            nonpadding=transformer.features_to_nonpadding(features, "inputs"),
            save_weights_to=self.attention_weights))

    return encoder_output, encoder_extra_output 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:39,代碼來源:universal_transformer.py

示例7: get_model

# 需要導入模塊: from tensor2tensor.models import transformer [as 別名]
# 或者: from tensor2tensor.models.transformer import Transformer [as 別名]
def get_model(hparams=None, mode=tf.estimator.ModeKeys.TRAIN,
              has_input=True, model_cls=transformer.Transformer):
  if hparams is None:
    hparams = transformer.transformer_tiny()
  hparams.hidden_size = 8
  hparams.filter_size = 32
  hparams.num_heads = 1
  hparams.layer_prepostprocess_dropout = 0.0

  p_hparams = problem_hparams.test_problem_hparams(VOCAB_SIZE, VOCAB_SIZE)
  if not has_input:
    p_hparams.input_modality = {}
  hparams.problem_hparams = p_hparams

  inputs = -1 + np.random.random_integers(
      VOCAB_SIZE, size=(BATCH_SIZE, INPUT_LENGTH, 1, 1))
  targets = -1 + np.random.random_integers(
      VOCAB_SIZE, size=(BATCH_SIZE, TARGET_LENGTH, 1, 1))
  features = {
      "targets": tf.constant(targets, dtype=tf.int32, name="targets"),
      "target_space_id": tf.constant(1, dtype=tf.int32)
  }
  if has_input:
    features["inputs"] = tf.constant(inputs, dtype=tf.int32, name="inputs")

  return model_cls(hparams, mode, p_hparams), features 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:28,代碼來源:transformer_test.py

示例8: body

# 需要導入模塊: from tensor2tensor.models import transformer [as 別名]
# 或者: from tensor2tensor.models.transformer import Transformer [as 別名]
def body(self, features):
    """Transformer main model_fn.

    Args:
      features: Map of features to the model. Should contain the following:
          "inputs": Transformer inputs.
              [batch_size, input_length, 1, hidden_dim].
          "targets": Target decoder outputs.
              [batch_size, target_length, 1, hidden_dim]
          "target_space_id": A scalar int from data_generators.problem.SpaceID.

    Returns:
      A 2-tuple containing:
          Logit tensor. [batch_size, decoder_length, vocab_size]
          Map of keys to loss tensors. Should contain the following:
              "training": Training loss (shift == 0).
              "auxiliary": Auxiliary loss (shift != 0).
    """
    output = super(TransformerAux, self).body(features)
    output, losses = self._normalize_body_output(output)

    aux = 0.0
    for shift in self._extract_shift_values():
      loss_num, loss_den = self.auxiliary_loss(output, features, shift)
      aux += loss_num / loss_den
    losses["auxiliary"] = aux

    return output, losses 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:30,代碼來源:transformer_aux.py

示例9: _beam_decode

# 需要導入模塊: from tensor2tensor.models import transformer [as 別名]
# 或者: from tensor2tensor.models.transformer import Transformer [as 別名]
def _beam_decode(self, features, decode_length, beam_size, top_beams, alpha,
                   use_tpu=False):
    """Beam search decoding.

    Args:
      features: an map of string to `Tensor`
      decode_length: an integer.  How many additional timesteps to decode.
      beam_size: number of beams.
      top_beams: an integer. How many of the beams to return.
      alpha: Float that controls the length penalty. larger the alpha, stronger
        the preference for longer translations.
      use_tpu: Whether we should use TPU or not.

    Returns:
      A dict of decoding results {
          "outputs": integer `Tensor` of decoded ids of shape
              [batch_size, <= decode_length] if beam_size == 1 or
              [batch_size, top_beams, <= decode_length]
          "scores": decoding log probs from the beam search,
              None if using greedy decoding (beam_size=1)
      }
    """
    # Caching is not ebabled in Universal Transformer
    # TODO(dehghani): Support fast decoding for Universal Transformer
    return self._beam_decode_slow(features, decode_length, beam_size,
                                  top_beams, alpha, use_tpu) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:28,代碼來源:universal_transformer.py

示例10: universal_transformer_base

# 需要導入模塊: from tensor2tensor.models import transformer [as 別名]
# 或者: from tensor2tensor.models.transformer import Transformer [as 別名]
def universal_transformer_base():
  """Base parameters for Universal Transformer."""
  hparams = transformer.transformer_base()
  # To have a similar capacity to the transformer_base with 6 layers,
  # we need to increase the size of the UT's layer
  # since, in fact, UT has a single layer repeating multiple times.
  hparams.hidden_size = 1024
  hparams.filter_size = 4096
  hparams.num_heads = 16
  hparams.layer_prepostprocess_dropout = 0.3
  hparams = update_hparams_for_universal_transformer(hparams)
  return hparams 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:14,代碼來源:universal_transformer.py

示例11: adaptive_universal_transformer_multilayer_tpu

# 需要導入模塊: from tensor2tensor.models import transformer [as 別名]
# 或者: from tensor2tensor.models.transformer import Transformer [as 別名]
def adaptive_universal_transformer_multilayer_tpu():
  """Multi-layer config for adaptive Transformer on TPU."""
  hparams = adaptive_universal_transformer_base_tpu()
  hparams.num_inrecurrence_layers = 2
  hparams.mix_with_transformer = "before_ut,after_ut"
  hparams.num_mixedin_layers = 1
  hparams.transformer_ffn_type = "sepconv"
  # TODO(lukaszkaiser): the options below don't work on TPU yet, make them work.
  # hparams.add_step_timing_signal = True
  # hparams.add_sru = True
  # hparams.self_attention_type = "dot_product_relative_v2"
  # hparams.max_relative_position = 256
  return hparams 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:15,代碼來源:universal_transformer.py

示例12: adaptive_universal_transformer_multilayer_hard

# 需要導入模塊: from tensor2tensor.models import transformer [as 別名]
# 或者: from tensor2tensor.models.transformer import Transformer [as 別名]
def adaptive_universal_transformer_multilayer_hard():
  """Multi-layer config for adaptive Transformer with hard attention."""
  hparams = adaptive_universal_transformer_multilayer_tpu()
  hparams.batch_size = 256
  hparams.hard_attention_k = 8
  hparams.add_step_timing_signal = True
  # hparams.add_sru = True  # This is very slow on GPUs, does it help?
  hparams.self_attention_type = "dot_product_relative_v2"
  hparams.max_relative_position = 256
  return hparams 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:12,代碼來源:universal_transformer.py

示例13: evolved_transformer_tiny

# 需要導入模塊: from tensor2tensor.models import transformer [as 別名]
# 或者: from tensor2tensor.models.transformer import Transformer [as 別名]
def evolved_transformer_tiny():
  """Base parameters for Evolved Transformer model."""
  hparams = add_evolved_transformer_hparams(transformer.transformer_tiny())
  hparams.learning_rate_schedule = (
      "constant*single_cycle_cos_decay")
  return hparams 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:8,代碼來源:evolved_transformer.py

示例14: evolved_transformer_big

# 需要導入模塊: from tensor2tensor.models import transformer [as 別名]
# 或者: from tensor2tensor.models.transformer import Transformer [as 別名]
def evolved_transformer_big():
  """Big parameters for Evolved Transformer model on WMT."""
  return add_evolved_transformer_hparams(transformer.transformer_big()) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:5,代碼來源:evolved_transformer.py

示例15: evolved_transformer_deep

# 需要導入模塊: from tensor2tensor.models import transformer [as 別名]
# 或者: from tensor2tensor.models.transformer import Transformer [as 別名]
def evolved_transformer_deep():
  """Deep parameters for Evolved Transformer model on WMT."""
  hparams = add_evolved_transformer_hparams(transformer.transformer_big())
  hparams.num_encoder_layers = 9
  hparams.num_decoder_layers = 10
  hparams.hidden_size = 640
  return hparams 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:9,代碼來源:evolved_transformer.py


注:本文中的tensor2tensor.models.transformer.Transformer方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。