當前位置: 首頁>>代碼示例>>Python>>正文


Python common_layers.shift_right_3d方法代碼示例

本文整理匯總了Python中tensor2tensor.layers.common_layers.shift_right_3d方法的典型用法代碼示例。如果您正苦於以下問題:Python common_layers.shift_right_3d方法的具體用法?Python common_layers.shift_right_3d怎麽用?Python common_layers.shift_right_3d使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensor2tensor.layers.common_layers的用法示例。


在下文中一共展示了common_layers.shift_right_3d方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: attention_lm_prepare_decoder

# 需要導入模塊: from tensor2tensor.layers import common_layers [as 別名]
# 或者: from tensor2tensor.layers.common_layers import shift_right_3d [as 別名]
def attention_lm_prepare_decoder(targets, hparams):
  """Prepare one shard of the model for the decoder.

  Args:
    targets: a Tensor.
    hparams: run hyperparameters

  Returns:
    decoder_input: a Tensor, bottom of decoder stack
    decoder_self_attention_bias: a Tensor, containing large negative values
    to implement masked attention and possibly biases for diagonal alignments
  """
  if hparams.prepend_mode == "prepend_inputs_full_attention":
    decoder_self_attention_bias = (
        common_attention.attention_bias_prepend_inputs_full_attention(
            common_attention.embedding_to_padding(targets)))
  else:
    decoder_self_attention_bias = (
        common_attention.attention_bias_lower_triangle(
            common_layers.shape_list(targets)[1]))
  decoder_input = common_layers.shift_right_3d(targets)
  if hparams.pos == "timing":
    decoder_input = common_attention.add_timing_signal_1d(decoder_input)
  return (decoder_input, decoder_self_attention_bias) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:26,代碼來源:attention_lm.py

示例2: prepare_decoder

# 需要導入模塊: from tensor2tensor.layers import common_layers [as 別名]
# 或者: from tensor2tensor.layers.common_layers import shift_right_3d [as 別名]
def prepare_decoder(targets, target_space_emb):
  """Prepare decoder."""
  decoder_self_attention_bias = (
      common_attention.attention_bias_lower_triangle(tf.shape(targets)[1]))
  target_space_emb = tf.reshape(target_space_emb, [1, 1, -1])
  target_space_emb = tf.tile(target_space_emb, [tf.shape(targets)[0], 1, 1])
  decoder_input = common_layers.shift_right_3d(
      targets, pad_value=target_space_emb)
  decoder_input = common_attention.add_timing_signal_1d(decoder_input)
  return (decoder_input, decoder_self_attention_bias) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:12,代碼來源:multimodel.py

示例3: attention_lm_moe_prepare_decoder

# 需要導入模塊: from tensor2tensor.layers import common_layers [as 別名]
# 或者: from tensor2tensor.layers.common_layers import shift_right_3d [as 別名]
def attention_lm_moe_prepare_decoder(targets, hparams):
  """Prepare one shard of the model for the decoder.

  Args:
    targets: a Tensor.
    hparams: run hyperparameters

  Returns:
    decoder_input: a Tensor, bottom of decoder stack
    decoder_self_attention_bias: a Tensor, containing large negative values
    to implement masked attention and possibly biases for diagonal alignments
    pad_remover (expert_utils.PadRemover): an util object to remove padding
  """
  targets_pad_mask = common_attention.embedding_to_padding(targets)
  with tf.name_scope("pad_remover"):
    # Because of the shift_right, the <eos> token will be considered as
    # padding. In practice, it doesn't really matter, due to the triangular
    # mask, this token should never be attended.
    pad_remover = expert_utils.PadRemover(targets_pad_mask)

  if hparams.prepend_mode == "prepend_inputs_full_attention":
    decoder_self_attention_bias = (
        common_attention.attention_bias_prepend_inputs_full_attention(
            targets_pad_mask))
  else:
    decoder_self_attention_bias = (
        common_attention.attention_bias_lower_triangle(tf.shape(targets)[1]))
  decoder_input = common_layers.shift_right_3d(targets)
  if hparams.pos == "timing":
    decoder_input = common_attention.add_timing_signal_1d(decoder_input)
  return (decoder_input, decoder_self_attention_bias, pad_remover) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:33,代碼來源:attention_lm_moe.py

示例4: transformer_prepare_decoder

# 需要導入模塊: from tensor2tensor.layers import common_layers [as 別名]
# 或者: from tensor2tensor.layers.common_layers import shift_right_3d [as 別名]
def transformer_prepare_decoder(targets, hparams, features=None):
  """Prepare one shard of the model for the decoder.

  Args:
    targets: a Tensor.
    hparams: run hyperparameters
    features: optionally pass the entire features dictionary as well.
      This is needed now for "packed" datasets.

  Returns:
    decoder_input: a Tensor, bottom of decoder stack
    decoder_self_attention_bias: a bias tensor for use in decoder self-attention
  """
  if hparams.causal_decoder_self_attention:
    # Causal attention.
    if hparams.prepend_mode == "prepend_inputs_full_attention":
      decoder_self_attention_bias = (
          common_attention.attention_bias_prepend_inputs_full_attention(
              common_attention.embedding_to_padding(targets)))
    else:
      decoder_self_attention_bias = (
          common_attention.attention_bias_lower_triangle(
              common_layers.shape_list(targets)[1]))
  else:
    # Full attention.
    decoder_padding = common_attention.embedding_to_padding(targets)
    decoder_self_attention_bias = (
        common_attention.attention_bias_ignore_padding(decoder_padding))

  if features and "targets_segmentation" in features:
    # "Packed" dataset - keep the examples from seeing each other.
    targets_segmentation = features["targets_segmentation"]
    targets_position = features["targets_position"]
    decoder_self_attention_bias += common_attention.attention_bias_same_segment(
        targets_segmentation, targets_segmentation)
  else:
    targets_position = None
  if hparams.proximity_bias:
    decoder_self_attention_bias += common_attention.attention_bias_proximal(
        common_layers.shape_list(targets)[1])
  decoder_input = common_layers.shift_right_3d(targets)
  if hparams.pos == "timing":
    if targets_position is not None:
      decoder_input = common_attention.add_timing_signal_1d_given_position(
          decoder_input, targets_position)
    else:
      decoder_input = common_attention.add_timing_signal_1d(decoder_input)
  elif hparams.pos == "emb":
    decoder_input = common_attention.add_positional_embedding(
        decoder_input, hparams.max_length, "targets_positional_embedding",
        targets_position)

  if hparams.activation_dtype == "bfloat16":
    decoder_self_attention_bias = tf.cast(decoder_self_attention_bias,
                                          tf.bfloat16)
  return (decoder_input, decoder_self_attention_bias) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:58,代碼來源:transformer.py

示例5: prepare_decoder

# 需要導入模塊: from tensor2tensor.layers import common_layers [as 別名]
# 或者: from tensor2tensor.layers.common_layers import shift_right_3d [as 別名]
def prepare_decoder(targets, hparams):
  """Prepare decoder for images."""
  targets_shape = common_layers.shape_list(targets)
  channels = hparams.num_channels
  curr_infer_length = None

  # during training, images are [batch, IMG_LEN, IMG_LEN, 3].
  # At inference, they are [batch, curr_infer_length, 1, 1]
  if hparams.mode == tf.contrib.learn.ModeKeys.INFER:
    curr_infer_length = targets_shape[1]
    if hparams.block_raster_scan:
      assert hparams.img_len*channels % hparams.query_shape[1] == 0
      assert hparams.img_len % hparams.query_shape[0] == 0
      total_block_width = hparams.img_len*channels
      # Decoding is in block raster scan order. We divide the image into
      # hparams.query_shape blocks and then decode each block in raster scan.
      # To make that compatible with our inference pipeline, pad the target so
      # that rows is a multiple of query_shape and columns is a multiple of
      # hparams.img_len*channels
      curr_infer_length = targets_shape[1]
      block_padding_factor = total_block_width * hparams.query_shape[0]
      targets = tf.pad(targets, [
          [0, 0], [0, -curr_infer_length % block_padding_factor],
          [0, 0], [0, 0]])

      num_blocks = total_block_width // hparams.query_shape[1]
      # Reshape the image to represent blocks
      target_blocks = tf.reshape(
          targets, [targets_shape[0], -1, num_blocks, hparams.query_shape[0],
                    hparams.query_shape[1]])
      # Transpose to read the image in 2D fashion.
      targets = tf.transpose(target_blocks, [0, 1, 3, 2, 4])
    else:
      # add padding to make sure the size of targets is a multiple of img_height
      # times number of channels. This is  needed for positional encodings and
      # for doing the RGB lookup.
      padding_factor = channels * hparams.img_len
      targets = tf.pad(targets, [
          [0, 0], [0, -curr_infer_length % padding_factor], [0, 0], [0, 0]])
    targets = tf.reshape(targets,
                         [targets_shape[0], -1, hparams.img_len, channels])
  # Preprocess image
  x = prepare_image(targets, hparams, name="dec_channels")
  x_shape = common_layers.shape_list(x)
  if (hparams.dec_attention_type == AttentionType.LOCAL_2D or
      hparams.dec_attention_type == AttentionType.LOCAL_BLOCK):
    x = common_attention.right_shift_blockwise(x, hparams.query_shape)
    x = add_pos_signals(x, hparams, "dec_pos")
  else:
    # Add position signals
    x = tf.reshape(x, [targets_shape[0],
                       x_shape[1]*x_shape[2], hparams.hidden_size])
    x = common_layers.shift_right_3d(x)
    x = tf.reshape(x, [targets_shape[0],
                       x_shape[1], x_shape[2], hparams.hidden_size])
    x = add_pos_signals(x, hparams, "dec_pos")
  x = common_layers.cast_like(x, targets)
  return x, x_shape[1], x_shape[2] 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:60,代碼來源:common_image_attention.py

示例6: transformer_prepare_decoder

# 需要導入模塊: from tensor2tensor.layers import common_layers [as 別名]
# 或者: from tensor2tensor.layers.common_layers import shift_right_3d [as 別名]
def transformer_prepare_decoder(targets, hparams, features=None, pad=None):
  """Prepare one shard of the model for the decoder.

  Args:
    targets: a Tensor.
    hparams: run hyperparameters
    features: optionally pass the entire features dictionary as well. This is
      needed now for "packed" datasets.
    pad: vector to use for padding when shifting targets right

  Returns:
    decoder_input: a Tensor, bottom of decoder stack
    decoder_self_attention_bias: a bias tensor for use in decoder self-attention
  """
  if hparams.causal_decoder_self_attention:
    # Causal attention.
    if hparams.prepend_mode == "prepend_inputs_full_attention":
      decoder_self_attention_bias = (
          common_attention.attention_bias_prepend_inputs_full_attention(
              common_attention.embedding_to_padding(targets)))
    else:
      decoder_self_attention_bias = (
          common_attention.attention_bias_lower_triangle(
              common_layers.shape_list(targets)[1]))
  else:
    # Full attention.
    decoder_padding = common_attention.embedding_to_padding(targets)
    decoder_self_attention_bias = (
        common_attention.attention_bias_ignore_padding(decoder_padding))

  if features and "targets_segmentation" in features:
    # "Packed" dataset - keep the examples from seeing each other.
    targets_segmentation = features["targets_segmentation"]
    targets_position = features["targets_position"]
    decoder_self_attention_bias += common_attention.attention_bias_same_segment(
        targets_segmentation, targets_segmentation)
  else:
    targets_position = None
  if hparams.proximity_bias:
    decoder_self_attention_bias += common_attention.attention_bias_proximal(
        common_layers.shape_list(targets)[1])
  decoder_input = common_layers.shift_right_3d(targets, pad)
  if hparams.pos == "timing":
    if targets_position is not None:
      decoder_input = common_attention.add_timing_signal_1d_given_position(
          decoder_input, targets_position)
    else:
      decoder_input = common_attention.add_timing_signal_1d(decoder_input)
  elif hparams.pos == "timing_from_features":
    decoder_input = common_attention.add_timing_signals_from_features(
        decoder_input, features, hparams.position_features)
  elif hparams.pos == "emb":
    decoder_input = common_attention.add_positional_embedding(
        decoder_input, hparams.max_length, "targets_positional_embedding",
        targets_position)

  if hparams.activation_dtype == "bfloat16":
    decoder_self_attention_bias = tf.cast(decoder_self_attention_bias,
                                          tf.bfloat16)
  return (decoder_input, decoder_self_attention_bias) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:62,代碼來源:transformer.py

示例7: prepare_decoder

# 需要導入模塊: from tensor2tensor.layers import common_layers [as 別名]
# 或者: from tensor2tensor.layers.common_layers import shift_right_3d [as 別名]
def prepare_decoder(targets, hparams):
  """Prepare decoder for images."""
  targets_shape = common_layers.shape_list(targets)
  channels = hparams.num_channels
  curr_infer_length = None

  # during training, images are [batch, IMG_LEN, IMG_LEN, 3].
  # At inference, they are [batch, curr_infer_length, 1, 1]
  if hparams.mode == tf.estimator.ModeKeys.PREDICT:
    curr_infer_length = targets_shape[1]
    if hparams.block_raster_scan:
      assert hparams.img_len*channels % hparams.query_shape[1] == 0
      assert hparams.img_len % hparams.query_shape[0] == 0
      total_block_width = hparams.img_len*channels
      # Decoding is in block raster scan order. We divide the image into
      # hparams.query_shape blocks and then decode each block in raster scan.
      # To make that compatible with our inference pipeline, pad the target so
      # that rows is a multiple of query_shape and columns is a multiple of
      # hparams.img_len*channels
      curr_infer_length = targets_shape[1]
      block_padding_factor = total_block_width * hparams.query_shape[0]
      targets = tf.pad(targets, [
          [0, 0], [0, -curr_infer_length % block_padding_factor],
          [0, 0], [0, 0]])

      num_blocks = total_block_width // hparams.query_shape[1]
      # Reshape the image to represent blocks
      target_blocks = tf.reshape(
          targets, [targets_shape[0], -1, num_blocks, hparams.query_shape[0],
                    hparams.query_shape[1]])
      # Transpose to read the image in 2D fashion.
      targets = tf.transpose(target_blocks, [0, 1, 3, 2, 4])
    else:
      # add padding to make sure the size of targets is a multiple of img_height
      # times number of channels. This is  needed for positional encodings and
      # for doing the RGB lookup.
      padding_factor = channels * hparams.img_len
      targets = tf.pad(targets, [
          [0, 0], [0, -curr_infer_length % padding_factor], [0, 0], [0, 0]])
    targets = tf.reshape(targets,
                         [targets_shape[0], -1, hparams.img_len, channels])
  # Preprocess image
  x = prepare_image(targets, hparams, name="dec_channels")
  x_shape = common_layers.shape_list(x)
  if (hparams.dec_attention_type == AttentionType.LOCAL_2D or
      hparams.dec_attention_type == AttentionType.LOCAL_BLOCK):
    x = common_attention.right_shift_blockwise(x, hparams.query_shape)
    x = add_pos_signals(x, hparams, "dec_pos")
  else:
    # Add position signals
    x = tf.reshape(x, [targets_shape[0],
                       x_shape[1]*x_shape[2], hparams.hidden_size])
    x = common_layers.shift_right_3d(x)
    x = tf.reshape(x, [targets_shape[0],
                       x_shape[1], x_shape[2], hparams.hidden_size])
    x = add_pos_signals(x, hparams, "dec_pos")
  x = common_layers.cast_like(x, targets)
  return x, x_shape[1], x_shape[2] 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:60,代碼來源:common_image_attention.py

示例8: transformer_prepare_decoder

# 需要導入模塊: from tensor2tensor.layers import common_layers [as 別名]
# 或者: from tensor2tensor.layers.common_layers import shift_right_3d [as 別名]
def transformer_prepare_decoder(targets, hparams, features=None, pad=None):
  """Prepare one shard of the model for the decoder.

  Args:
    targets: a Tensor.
    hparams: run hyperparameters
    features: optionally pass the entire features dictionary as well. This is
      needed now for "packed" datasets.
    pad: vector to use for padding when shifting targets right

  Returns:
    decoder_input: a Tensor, bottom of decoder stack
    decoder_self_attention_bias: a bias tensor for use in decoder self-attention
  """
  if hparams.causal_decoder_self_attention:
    # Causal attention.
    if hparams.prepend_mode == "prepend_inputs_full_attention":
      decoder_self_attention_bias = (
          common_attention.attention_bias_prepend_inputs_full_attention(
              common_attention.embedding_to_padding(targets)))
    else:
      decoder_self_attention_bias = (
          common_attention.attention_bias_lower_triangle(
              common_layers.shape_list(targets)[1]))
  else:
    # Full attention.
    decoder_padding = common_attention.embedding_to_padding(targets)
    decoder_self_attention_bias = (
        common_attention.attention_bias_ignore_padding(decoder_padding))

  if features and "targets_segmentation" in features:
    # "Packed" dataset - keep the examples from seeing each other.
    targets_segmentation = features["targets_segmentation"]
    targets_position = features["targets_position"]
    decoder_self_attention_bias += common_attention.attention_bias_same_segment(
        targets_segmentation, targets_segmentation)
  else:
    targets_position = None
  if hparams.proximity_bias:
    decoder_self_attention_bias += common_attention.attention_bias_proximal(
        common_layers.shape_list(targets)[1])
  decoder_input = common_layers.shift_right_3d(targets, pad)
  if hparams.pos == "timing":
    if targets_position is not None:
      decoder_input = common_attention.add_timing_signal_1d_given_position(
          decoder_input, targets_position)
    else:
      decoder_input = common_attention.add_timing_signal_1d(decoder_input)
  elif hparams.pos == "emb":
    decoder_input = common_attention.add_positional_embedding(
        decoder_input, hparams.max_length, "targets_positional_embedding",
        targets_position)

  if hparams.activation_dtype == "bfloat16":
    decoder_self_attention_bias = tf.cast(decoder_self_attention_bias,
                                          tf.bfloat16)
  return (decoder_input, decoder_self_attention_bias) 
開發者ID:yyht,項目名稱:BERT,代碼行數:59,代碼來源:transformer.py


注:本文中的tensor2tensor.layers.common_layers.shift_right_3d方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。