本文整理匯總了Python中tensor2tensor.layers.common_layers.length_from_embedding方法的典型用法代碼示例。如果您正苦於以下問題:Python common_layers.length_from_embedding方法的具體用法?Python common_layers.length_from_embedding怎麽用?Python common_layers.length_from_embedding使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensor2tensor.layers.common_layers
的用法示例。
在下文中一共展示了common_layers.length_from_embedding方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: lstm_seq2seq_internal_attention
# 需要導入模塊: from tensor2tensor.layers import common_layers [as 別名]
# 或者: from tensor2tensor.layers.common_layers import length_from_embedding [as 別名]
def lstm_seq2seq_internal_attention(inputs, targets, hparams, train):
"""LSTM seq2seq model with attention, main step used for training."""
with tf.variable_scope("lstm_seq2seq_attention"):
# This is a temporary fix for varying-length sequences within in a batch.
# A more complete fix should pass a length tensor from outside so that
# all the lstm variants can use it.
inputs_length = common_layers.length_from_embedding(inputs)
# Flatten inputs.
inputs = common_layers.flatten4d3d(inputs)
# LSTM encoder.
inputs = tf.reverse_sequence(inputs, inputs_length, seq_axis=1)
encoder_outputs, final_encoder_state = lstm(
inputs, inputs_length, hparams, train, "encoder")
# LSTM decoder with attention.
shifted_targets = common_layers.shift_right(targets)
# Add 1 to account for the padding added to the left from shift_right
targets_length = common_layers.length_from_embedding(shifted_targets) + 1
decoder_outputs = lstm_attention_decoder(
common_layers.flatten4d3d(shifted_targets), hparams, train, "decoder",
final_encoder_state, encoder_outputs, inputs_length, targets_length)
return tf.expand_dims(decoder_outputs, axis=2)
示例2: lstm_seq2seq_internal_attention_bid_encoder
# 需要導入模塊: from tensor2tensor.layers import common_layers [as 別名]
# 或者: from tensor2tensor.layers.common_layers import length_from_embedding [as 別名]
def lstm_seq2seq_internal_attention_bid_encoder(inputs, targets, hparams,
train):
"""LSTM seq2seq model with attention, main step used for training."""
with tf.variable_scope("lstm_seq2seq_attention_bid_encoder"):
inputs_length = common_layers.length_from_embedding(inputs)
# Flatten inputs.
inputs = common_layers.flatten4d3d(inputs)
# LSTM encoder.
encoder_outputs, final_encoder_state = lstm_bid_encoder(
inputs, inputs_length, hparams, train, "encoder")
# LSTM decoder with attention
shifted_targets = common_layers.shift_right(targets)
# Add 1 to account for the padding added to the left from shift_right
targets_length = common_layers.length_from_embedding(shifted_targets) + 1
hparams_decoder = copy.copy(hparams)
hparams_decoder.hidden_size = 2 * hparams.hidden_size
decoder_outputs = lstm_attention_decoder(
common_layers.flatten4d3d(shifted_targets), hparams_decoder, train,
"decoder", final_encoder_state, encoder_outputs,
inputs_length, targets_length)
return tf.expand_dims(decoder_outputs, axis=2)
示例3: lstm_seq2seq_internal
# 需要導入模塊: from tensor2tensor.layers import common_layers [as 別名]
# 或者: from tensor2tensor.layers.common_layers import length_from_embedding [as 別名]
def lstm_seq2seq_internal(inputs, targets, hparams, train):
"""The basic LSTM seq2seq model, main step used for training."""
with tf.variable_scope("lstm_seq2seq"):
if inputs is not None:
inputs_length = common_layers.length_from_embedding(inputs)
# Flatten inputs.
inputs = common_layers.flatten4d3d(inputs)
# LSTM encoder.
inputs = tf.reverse_sequence(inputs, inputs_length, seq_axis=1)
_, final_encoder_state = lstm(inputs, inputs_length, hparams, train,
"encoder")
else:
final_encoder_state = None
# LSTM decoder.
shifted_targets = common_layers.shift_right(targets)
# Add 1 to account for the padding added to the left from shift_right
targets_length = common_layers.length_from_embedding(shifted_targets) + 1
decoder_outputs, _ = lstm(
common_layers.flatten4d3d(shifted_targets),
targets_length,
hparams,
train,
"decoder",
initial_state=final_encoder_state)
return tf.expand_dims(decoder_outputs, axis=2)
示例4: lstm_seq2seq_internal_bid_encoder
# 需要導入模塊: from tensor2tensor.layers import common_layers [as 別名]
# 或者: from tensor2tensor.layers.common_layers import length_from_embedding [as 別名]
def lstm_seq2seq_internal_bid_encoder(inputs, targets, hparams, train):
"""The basic LSTM seq2seq model with bidirectional encoder."""
with tf.variable_scope("lstm_seq2seq_bid_encoder"):
if inputs is not None:
inputs_length = common_layers.length_from_embedding(inputs)
# Flatten inputs.
inputs = common_layers.flatten4d3d(inputs)
# LSTM encoder.
_, final_encoder_state = lstm_bid_encoder(
inputs, inputs_length, hparams, train, "encoder")
else:
inputs_length = None
final_encoder_state = None
# LSTM decoder.
shifted_targets = common_layers.shift_right(targets)
# Add 1 to account for the padding added to the left from shift_right
targets_length = common_layers.length_from_embedding(shifted_targets) + 1
hparams_decoder = copy.copy(hparams)
hparams_decoder.hidden_size = 2 * hparams.hidden_size
decoder_outputs, _ = lstm(
common_layers.flatten4d3d(shifted_targets),
targets_length,
hparams_decoder,
train,
"decoder",
initial_state=final_encoder_state)
return tf.expand_dims(decoder_outputs, axis=2)
示例5: body
# 需要導入模塊: from tensor2tensor.layers import common_layers [as 別名]
# 或者: from tensor2tensor.layers.common_layers import length_from_embedding [as 別名]
def body(self, features):
if self._hparams.initializer == "orthogonal":
raise ValueError("LSTM models fail with orthogonal initializer.")
train = self._hparams.mode == tf.estimator.ModeKeys.TRAIN
inputs = features.get("inputs")
inputs_length = common_layers.length_from_embedding(inputs)
# Flatten inputs.
inputs = common_layers.flatten4d3d(inputs)
# LSTM encoder.
inputs = tf.reverse_sequence(inputs, inputs_length, seq_axis=1)
encoder_output, _ = lstm(inputs, inputs_length, self._hparams, train,
"encoder")
return tf.expand_dims(encoder_output, axis=2)
示例6: _build_inputs_and_targets
# 需要導入模塊: from tensor2tensor.layers import common_layers [as 別名]
# 或者: from tensor2tensor.layers.common_layers import length_from_embedding [as 別名]
def _build_inputs_and_targets(
self, from_seqs=None, from_tags=None, to_seqs=None, to_tags=None):
"""Given from and to sequences and tags, construct inputs and targets."""
del from_tags # Unused.
if from_seqs is not None:
inputs = from_seqs
inputs_length = common_layers.length_from_embedding(inputs)
if to_tags is not None:
# Add to-tags to the inputs and adjust lengths.
# <float32> [batch_size, seq_len + 1, 1, emb_size].
inputs = tf.concat([to_tags, inputs], axis=1)
inputs_length = inputs_length + 1
inputs = common_layers.flatten4d3d(inputs)
else:
inputs = None
inputs_length = None
if to_seqs is not None:
# Shift to-sequences to form targets.
# <float32> [batch_size, seq_len, 1, emb_size].
targets = common_layers.shift_right(to_seqs)
# Add 1 to account for the padding added to the left from shift_right.
targets_length = common_layers.length_from_embedding(targets) + 1
targets = common_layers.flatten4d3d(targets)
else:
targets = None
targets_length = None
return (inputs, inputs_length), (targets, targets_length)
示例7: _build_lm_inputs
# 需要導入模塊: from tensor2tensor.layers import common_layers [as 別名]
# 或者: from tensor2tensor.layers.common_layers import length_from_embedding [as 別名]
def _build_lm_inputs(self, features):
"""Builds inputs and targets for LM training."""
targets = features["targets"]
target_tags = features["target_tags"]
if self._hparams.mode == tf.estimator.ModeKeys.PREDICT:
target_tags = tf.tile(target_tags, [self._hparams.beam_width, 1, 1, 1])
# Construct LM inputs.
inputs = common_layers.shift_right(targets, pad_value=target_tags)
inputs_length = common_layers.length_from_embedding(targets) + 1
inputs = common_layers.flatten4d3d(inputs)
return inputs, inputs_length
示例8: _preprocess
# 需要導入模塊: from tensor2tensor.layers import common_layers [as 別名]
# 或者: from tensor2tensor.layers.common_layers import length_from_embedding [as 別名]
def _preprocess(self, features):
"""Preprocesses features for multilingual translation."""
inputs = features["inputs"]
targets = features["targets"]
target_tags = features["target_tags"]
# Expand target tags to beam width, if necessary.
if self._hparams.mode == tf.estimator.ModeKeys.PREDICT:
# <float32> [batch_size * beam_width, 1, 1, emb_size].
beam_width = self._hparams.beam_width
target_tags = tf.tile(target_tags, [beam_width, 1, 1, 1])
# Add target tags to the input sequences.
# <float32> [batch_size, seq_len + 1, 1, emb_size].
inputs = tf.concat([target_tags, inputs], axis=1)
# Compute length of the input sequences.
inputs_length = common_layers.length_from_embedding(inputs)
inputs = common_layers.flatten4d3d(inputs)
# Preprocess targets.
targets = common_layers.shift_right(targets)
# Add 1 to account for the padding added to the left from shift_right.
targets_length = common_layers.length_from_embedding(targets) + 1
targets = common_layers.flatten4d3d(targets)
return inputs, inputs_length, targets, targets_length