當前位置: 首頁>>代碼示例>>Python>>正文


Python common_layers.layer_norm方法代碼示例

本文整理匯總了Python中tensor2tensor.layers.common_layers.layer_norm方法的典型用法代碼示例。如果您正苦於以下問題:Python common_layers.layer_norm方法的具體用法?Python common_layers.layer_norm怎麽用?Python common_layers.layer_norm使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensor2tensor.layers.common_layers的用法示例。


在下文中一共展示了common_layers.layer_norm方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: encoder

# 需要導入模塊: from tensor2tensor.layers import common_layers [as 別名]
# 或者: from tensor2tensor.layers.common_layers import layer_norm [as 別名]
def encoder(self, x):
    with tf.variable_scope("encoder"):
      hparams = self.hparams
      kernel, strides = self._get_kernel_and_strides()
      # Down-convolutions.
      for i in range(hparams.num_hidden_layers):
        x = self.make_even_size(x)
        x = tf.layers.conv2d(
            x,
            hparams.hidden_size * 2**(i + 1),
            kernel,
            strides=strides,
            padding="SAME",
            activation=common_layers.belu,
            name="conv_%d" % i)
        x = common_layers.layer_norm(x)
      return x 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:19,代碼來源:autoencoders.py

示例2: encode

# 需要導入模塊: from tensor2tensor.layers import common_layers [as 別名]
# 或者: from tensor2tensor.layers.common_layers import layer_norm [as 別名]
def encode(self, inputs, target_space, hparams, features=None, losses=None):
    """Add layers of strided convolutions on top of encoder."""
    with tf.variable_scope("downstride"):
      hparams = self.hparams
      kernel, strides = (4, 4), (2, 2)
      x = inputs
      # Down-convolutions.
      for i in range(hparams.num_compress_steps):
        x = common_layers.make_even_size(x)
        x = tf.layers.conv2d(
            x, hparams.hidden_size, kernel, strides=strides,
            padding="SAME", activation=common_layers.belu, name="conv_%d" % i)
        x = common_layers.layer_norm(x)

    encoder_output, encoder_decoder_attention_bias = super(
        TransformerSketch, self).encode(
            x, target_space, hparams, features=features, losses=losses)
    return encoder_output, encoder_decoder_attention_bias 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:20,代碼來源:transformer_sketch.py

示例3: residual_dilated_conv

# 需要導入模塊: from tensor2tensor.layers import common_layers [as 別名]
# 或者: from tensor2tensor.layers.common_layers import layer_norm [as 別名]
def residual_dilated_conv(x, repeat, padding, name, hparams):
  """A stack of convolution blocks with residual connections."""
  with tf.variable_scope(name):
    k = (hparams.kernel_height, hparams.kernel_width)
    dilations_and_kernels = [((2**i, 1), k)
                             for i in range(hparams.num_hidden_layers)]
    for i in range(repeat):
      with tf.variable_scope("repeat_%d" % i):
        y = common_layers.conv_block(
            common_layers.layer_norm(x, hparams.hidden_size, name="lnorm"),
            hparams.hidden_size,
            dilations_and_kernels,
            padding=padding,
            name="residual_conv")
        y = tf.nn.dropout(y, 1.0 - hparams.dropout)
        x += y
    return x 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:19,代碼來源:bytenet.py

示例4: encoder

# 需要導入模塊: from tensor2tensor.layers import common_layers [as 別名]
# 或者: from tensor2tensor.layers.common_layers import layer_norm [as 別名]
def encoder(self, x):
    with tf.variable_scope("encoder"):
      hparams = self.hparams
      layers = []
      kernel, strides = self._get_kernel_and_strides()
      # Down-convolutions.
      for i in range(hparams.num_hidden_layers):
        x = self.make_even_size(x)
        layers.append(x)
        x = tf.layers.conv2d(
            x,
            hparams.hidden_size * 2**(i + 1),
            kernel,
            strides=strides,
            padding="SAME",
            activation=common_layers.belu,
            name="conv_%d" % i)
        x = common_layers.layer_norm(x, name="ln_%d" % i)
      return x, layers 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:21,代碼來源:autoencoders.py

示例5: decoder

# 需要導入模塊: from tensor2tensor.layers import common_layers [as 別名]
# 或者: from tensor2tensor.layers.common_layers import layer_norm [as 別名]
def decoder(self, x, encoder_layers):
    del encoder_layers
    with tf.variable_scope("decoder"):
      hparams = self.hparams
      kernel, strides = self._get_kernel_and_strides()
      # Up-convolutions.
      for i in range(hparams.num_hidden_layers):
        j = hparams.num_hidden_layers - i - 1
        x = tf.layers.conv2d_transpose(
            x,
            hparams.hidden_size * 2**j,
            kernel,
            strides=strides,
            padding="SAME",
            activation=common_layers.belu,
            name="deconv_%d" % j)
        x = common_layers.layer_norm(x, name="ln_%d" % i)
      return x 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:20,代碼來源:autoencoders.py

示例6: residual_conv

# 需要導入模塊: from tensor2tensor.layers import common_layers [as 別名]
# 或者: from tensor2tensor.layers.common_layers import layer_norm [as 別名]
def residual_conv(x, repeat, k, hparams, name, reuse=None):
  """A stack of convolution blocks with residual connections."""
  with tf.variable_scope(name, reuse=reuse):
    dilations_and_kernels = [((1, 1), k) for _ in range(3)]
    for i in range(repeat):
      with tf.variable_scope("repeat_%d" % i):
        y = common_layers.conv_block(
            common_layers.layer_norm(x, hparams.hidden_size, name="lnorm"),
            hparams.hidden_size,
            dilations_and_kernels,
            padding="SAME",
            name="residual_conv")
        y = tf.nn.dropout(y, 1.0 - hparams.dropout)
        x += y
    return x 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:17,代碼來源:transformer_vae.py

示例7: residual_fn2

# 需要導入模塊: from tensor2tensor.layers import common_layers [as 別名]
# 或者: from tensor2tensor.layers.common_layers import layer_norm [as 別名]
def residual_fn2(x, y, hparams):
  y = tf.nn.dropout(y, 1.0 - hparams.dropout)
  return common_layers.layer_norm(x + y) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:5,代碼來源:multimodel.py

示例8: residual_fn3

# 需要導入模塊: from tensor2tensor.layers import common_layers [as 別名]
# 或者: from tensor2tensor.layers.common_layers import layer_norm [as 別名]
def residual_fn3(x, y, z, hparams):
  y = tf.nn.dropout(y, 1.0 - hparams.dropout)
  z = tf.nn.dropout(z, 1.0 - hparams.dropout)
  return common_layers.layer_norm(x + y + z) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:6,代碼來源:multimodel.py

示例9: residual_block

# 需要導入模塊: from tensor2tensor.layers import common_layers [as 別名]
# 或者: from tensor2tensor.layers.common_layers import layer_norm [as 別名]
def residual_block(x, hparams):
  """A stack of convolution blocks with residual connection."""
  k = (hparams.kernel_height, hparams.kernel_width)
  dilations_and_kernels = [((1, 1), k) for _ in range(3)]
  y = common_layers.subseparable_conv_block(
      x,
      hparams.hidden_size,
      dilations_and_kernels,
      padding="SAME",
      separability=0,
      name="residual_block")
  x = common_layers.layer_norm(x + y, hparams.hidden_size, name="lnorm")
  return tf.nn.dropout(x, 1.0 - hparams.dropout) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:15,代碼來源:xception.py

示例10: residual_block_layer

# 需要導入模塊: from tensor2tensor.layers import common_layers [as 別名]
# 或者: from tensor2tensor.layers.common_layers import layer_norm [as 別名]
def residual_block_layer(inputs, hparams):
  """Residual block over inputs.

  Runs a residual block consisting of
    conv: kernel_size x kernel_size
    conv: 1x1
    dropout, add and normalize according to hparams.layer_postprocess_sequence.

  Args:
    inputs: Tensor of shape [batch, height, width, hparams.hidden_size].
    hparams: tf.contrib.training.HParams.

  Returns:
    Tensor of shape [batch, height, width, hparams.hidden_size].
  """
  kernel = (hparams.res_kernel_size, hparams.res_kernel_size)
  x = inputs
  for i in range(hparams.num_res_layers):
    with tf.variable_scope("res_conv_%d" % i):
      # kernel_size x kernel_size conv block
      y = common_layers.conv_block(
          common_layers.layer_norm(x, hparams.hidden_size, name="lnorm"),
          hparams.hidden_size, [((1, 1), kernel)],
          strides=(1, 1),
          padding="SAME",
          name="residual_conv")
      # 1x1 conv block
      y = common_layers.conv_block(
          y,
          hparams.hidden_size, [((1, 1), (1, 1))],
          strides=(1, 1),
          padding="SAME",
          name="residual_dense")
      x = common_layers.layer_postprocess(x, y, hparams)
  return x 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:37,代碼來源:latent_layers.py

示例11: embed

# 需要導入模塊: from tensor2tensor.layers import common_layers [as 別名]
# 或者: from tensor2tensor.layers.common_layers import layer_norm [as 別名]
def embed(self, x, name="embedding"):
    """Input embedding with a non-zero bias for uniform inputs."""
    with tf.variable_scope(name, reuse=tf.AUTO_REUSE):
      x_shape = common_layers.shape_list(x)
      # Merge channels and depth before embedding.
      x = tf.reshape(x, x_shape[:-2] + [x_shape[-2] * x_shape[-1]])
      x = tf.layers.dense(
          x,
          self.hparams.hidden_size,
          name="embed",
          activation=common_layers.belu,
          bias_initializer=tf.random_normal_initializer(stddev=0.01))
      x = common_layers.layer_norm(x, name="ln_embed")
      return common_attention.add_timing_signal_nd(x) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:16,代碼來源:autoencoders.py

示例12: mlp

# 需要導入模塊: from tensor2tensor.layers import common_layers [as 別名]
# 或者: from tensor2tensor.layers.common_layers import layer_norm [as 別名]
def mlp(feature, hparams, name="mlp"):
  """Multi layer perceptron with dropout and relu activation."""
  with tf.variable_scope(name, "mlp", values=[feature]):
    num_mlp_layers = hparams.num_mlp_layers
    mlp_size = hparams.mlp_size
    for _ in range(num_mlp_layers):
      feature = common_layers.dense(feature, mlp_size, activation=None)
      utils.collect_named_outputs("norms", "mlp_feature",
                                  tf.norm(feature, axis=-1))
      feature = common_layers.layer_norm(feature)
      feature = tf.nn.relu(feature)
      feature = tf.nn.dropout(feature, keep_prob=1.-hparams.dropout)
    return feature 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:15,代碼來源:vqa_self_attention.py

示例13: testLayerNorm

# 需要導入模塊: from tensor2tensor.layers import common_layers [as 別名]
# 或者: from tensor2tensor.layers.common_layers import layer_norm [as 別名]
def testLayerNorm(self):
    x = np.random.rand(5, 7, 11)
    y = common_layers.layer_norm(tf.constant(x, dtype=tf.float32), 11)
    self.evaluate(tf.global_variables_initializer())
    res = self.evaluate(y)
    self.assertEqual(res.shape, (5, 7, 11)) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:8,代碼來源:common_layers_test.py

示例14: residual_block_layer

# 需要導入模塊: from tensor2tensor.layers import common_layers [as 別名]
# 或者: from tensor2tensor.layers.common_layers import layer_norm [as 別名]
def residual_block_layer(inputs, hparams):
  """Residual block over inputs.

  Runs a residual block consisting of
    conv: kernel_size x kernel_size
    conv: 1x1
    dropout, add and normalize according to hparams.layer_postprocess_sequence.

  Args:
    inputs: Tensor of shape [batch, height, width, hparams.hidden_size].
    hparams: HParams.

  Returns:
    Tensor of shape [batch, height, width, hparams.hidden_size].
  """
  kernel = (hparams.res_kernel_size, hparams.res_kernel_size)
  x = inputs
  for i in range(hparams.num_res_layers):
    with tf.variable_scope("res_conv_%d" % i):
      # kernel_size x kernel_size conv block
      y = common_layers.conv_block(
          common_layers.layer_norm(x, hparams.hidden_size, name="lnorm"),
          hparams.hidden_size, [((1, 1), kernel)],
          strides=(1, 1),
          padding="SAME",
          name="residual_conv")
      # 1x1 conv block
      y = common_layers.conv_block(
          y,
          hparams.hidden_size, [((1, 1), (1, 1))],
          strides=(1, 1),
          padding="SAME",
          name="residual_dense")
      x = common_layers.layer_postprocess(x, y, hparams)
  return x 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:37,代碼來源:latent_layers.py


注:本文中的tensor2tensor.layers.common_layers.layer_norm方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。