本文整理匯總了Python中tensor2tensor.layers.common_layers.is_xla_compiled方法的典型用法代碼示例。如果您正苦於以下問題:Python common_layers.is_xla_compiled方法的具體用法?Python common_layers.is_xla_compiled怎麽用?Python common_layers.is_xla_compiled使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensor2tensor.layers.common_layers
的用法示例。
在下文中一共展示了common_layers.is_xla_compiled方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: estimator_spec_eval
# 需要導入模塊: from tensor2tensor.layers import common_layers [as 別名]
# 或者: from tensor2tensor.layers.common_layers import is_xla_compiled [as 別名]
def estimator_spec_eval(self, features, logits, labels, loss, losses_dict):
"""Constructs `tf.estimator.EstimatorSpec` for EVAL (evaluation) mode."""
estimator_spec = super(TransformerAE, self).estimator_spec_eval(
features, logits, labels, loss, losses_dict)
if common_layers.is_xla_compiled():
# For TPUs (and XLA more broadly?), do not add summary hooks that depend
# on losses; they are not supported.
return estimator_spec
summary_op = tf.get_collection(tf.GraphKeys.SUMMARIES, scope="losses")
summary_op.extend(tf.get_collection(tf.GraphKeys.SUMMARIES, scope="loss"))
summary_op.append(tf.summary.scalar("loss", loss))
summary_saver_hook = tf.train.SummarySaverHook(
save_steps=100,
summary_op=summary_op,
output_dir=os.path.join(self.hparams.model_dir, "eval"))
hooks = list(estimator_spec.evaluation_hooks)
hooks.append(summary_saver_hook)
return estimator_spec._replace(evaluation_hooks=hooks)
示例2: body
# 需要導入模塊: from tensor2tensor.layers import common_layers [as 別名]
# 或者: from tensor2tensor.layers.common_layers import is_xla_compiled [as 別名]
def body(self, features):
assert self._hparams.block_size > 0
assert not common_layers.is_xla_compiled()
assert "targets_segmentation" not in features
decoder_output = super(TransformerBlockParallel, self).body(features)
assert not isinstance(decoder_output, tuple)
assert len(decoder_output.shape) == 4
relu_dropout_broadcast_dims = (
common_layers.comma_separated_string_to_integer_list(
getattr(self._hparams, "relu_dropout_broadcast_dims", "")))
with tf.variable_scope("block_size_%d" % self._hparams.block_size):
block_output = common_layers.dense_relu_dense(
decoder_output,
self._hparams.block_size * self._hparams.filter_size,
self._hparams.block_size * self._hparams.hidden_size,
dropout=self._hparams.relu_dropout,
dropout_broadcast_dims=relu_dropout_broadcast_dims)
batch_size, length = common_layers.shape_list(decoder_output)[:2]
block_output = tf.reshape(block_output, [
batch_size,
length,
self._hparams.block_size,
self._hparams.hidden_size
])
block_output = common_layers.layer_postprocess(
decoder_output, block_output, self._hparams)
return block_output
示例3: vq_nearest_neighbor
# 需要導入模塊: from tensor2tensor.layers import common_layers [as 別名]
# 或者: from tensor2tensor.layers.common_layers import is_xla_compiled [as 別名]
def vq_nearest_neighbor(x, means,
soft_em=False, num_samples=10, temperature=None):
"""Find the nearest element in means to elements in x."""
bottleneck_size = common_layers.shape_list(means)[0]
x_norm_sq = tf.reduce_sum(tf.square(x), axis=-1, keepdims=True)
means_norm_sq = tf.reduce_sum(tf.square(means), axis=-1, keepdims=True)
scalar_prod = tf.matmul(x, means, transpose_b=True)
dist = x_norm_sq + tf.transpose(means_norm_sq) - 2 * scalar_prod
if soft_em:
x_means_idx = tf.multinomial(-dist, num_samples=num_samples)
x_means_hot = tf.one_hot(
x_means_idx, depth=common_layers.shape_list(means)[0])
x_means_hot = tf.reduce_mean(x_means_hot, axis=1)
else:
if temperature is None:
x_means_idx = tf.argmax(-dist, axis=-1)
else:
x_means_idx = tf.multinomial(- dist / temperature, 1)
x_means_idx = tf.squeeze(x_means_idx, axis=-1)
if (common_layers.should_generate_summaries() and
not common_layers.is_xla_compiled()):
tf.summary.histogram("means_idx", tf.reshape(x_means_idx, [-1]))
x_means_hot = tf.one_hot(x_means_idx, bottleneck_size)
x_means_hot_flat = tf.reshape(x_means_hot, [-1, bottleneck_size])
x_means = tf.matmul(x_means_hot_flat, means)
e_loss = tf.reduce_mean(tf.squared_difference(x, tf.stop_gradient(x_means)))
return x_means_hot, e_loss, dist
示例4: vq_nearest_neighbor
# 需要導入模塊: from tensor2tensor.layers import common_layers [as 別名]
# 或者: from tensor2tensor.layers.common_layers import is_xla_compiled [as 別名]
def vq_nearest_neighbor(x, means,
soft_em=False, num_samples=10, temperature=None):
"""Find the nearest element in means to elements in x."""
bottleneck_size = common_layers.shape_list(means)[0]
x_norm_sq = tf.reduce_sum(tf.square(x), axis=-1, keepdims=True)
means_norm_sq = tf.reduce_sum(tf.square(means), axis=-1, keepdims=True)
scalar_prod = tf.matmul(x, means, transpose_b=True)
dist = x_norm_sq + tf.transpose(means_norm_sq) - 2 * scalar_prod
if soft_em:
x_means_idx = tf.multinomial(-dist, num_samples=num_samples)
x_means_hot = tf.one_hot(
x_means_idx, depth=common_layers.shape_list(means)[0])
x_means_hot = tf.reduce_mean(x_means_hot, axis=1)
else:
if temperature is None:
x_means_idx = tf.argmax(-dist, axis=-1)
else:
x_means_idx = tf.multinomial(- dist / temperature, 1)
x_means_idx = tf.squeeze(x_means_idx, axis=-1)
if (common_layers.should_generate_summaries() and
not common_layers.is_xla_compiled()):
tf.summary.histogram("means_idx", tf.reshape(x_means_idx, [-1]))
x_means_hot = tf.one_hot(x_means_idx, bottleneck_size)
x_means_hot_flat = tf.reshape(x_means_hot, [-1, bottleneck_size])
x_means = tf.matmul(x_means_hot_flat, means)
e_loss = tf.reduce_mean(tf.square(x - tf.stop_gradient(x_means)))
return x_means_hot, e_loss, dist
示例5: transformer_encode
# 需要導入模塊: from tensor2tensor.layers import common_layers [as 別名]
# 或者: from tensor2tensor.layers.common_layers import is_xla_compiled [as 別名]
def transformer_encode(encoder_function, inputs, target_space, hparams,
attention_weights=None, features=None, losses=None,
prepare_encoder_fn=None, **kwargs):
"""Encode transformer inputs.
Args:
encoder_function: the encoder function
inputs: Transformer inputs [batch_size, input_length, 1, hidden_dim] which
will be flattened along the two spatial dimensions.
target_space: scalar, target space ID.
hparams: hyperparameters for model.
attention_weights: weight to store attention to.
features: optionally pass the entire features dictionary as well. This is
needed now for "packed" datasets.
losses: optional list onto which to append extra training losses
prepare_encoder_fn: optional, alternative to transformer_prepare_encoder.
**kwargs: additional arguments to pass to encoder_function
Returns:
Tuple of:
encoder_output: Encoder representation.
[batch_size, input_length, hidden_dim]
encoder_decoder_attention_bias: Bias and mask weights for
encoder-decoder attention. [batch_size, input_length]
"""
inputs = common_layers.flatten4d3d(inputs)
if not prepare_encoder_fn:
prepare_encoder_fn = transformer_prepare_encoder
encoder_input, self_attention_bias, encoder_decoder_attention_bias = (
prepare_encoder_fn(
inputs, target_space, hparams, features=features))
mlperf_log.transformer_print(
key=mlperf_log.MODEL_HP_LAYER_POSTPROCESS_DROPOUT,
value=hparams.layer_prepostprocess_dropout,
hparams=hparams)
encoder_input = tf.nn.dropout(encoder_input,
1.0 - hparams.layer_prepostprocess_dropout)
attn_bias_for_padding = None
# Otherwise the encoder will just use encoder_self_attention_bias.
if hparams.unidirectional_encoder:
attn_bias_for_padding = encoder_decoder_attention_bias
encoder_output = encoder_function(
encoder_input,
self_attention_bias,
hparams,
nonpadding=features_to_nonpadding(features, "inputs"),
save_weights_to=attention_weights,
make_image_summary=not common_layers.is_xla_compiled(),
losses=losses,
attn_bias_for_padding=attn_bias_for_padding,
**kwargs)
return encoder_output, encoder_decoder_attention_bias
示例6: decode
# 需要導入模塊: from tensor2tensor.layers import common_layers [as 別名]
# 或者: from tensor2tensor.layers.common_layers import is_xla_compiled [as 別名]
def decode(self,
decoder_input,
encoder_output,
encoder_decoder_attention_bias,
decoder_self_attention_bias,
hparams,
cache=None,
nonpadding=None,
losses=None):
"""Decode inputs using _decoder().
This performs the same way as transformer.Transformer.decode with the
decoder portion replaced with _decoder().
Args:
decoder_input: Inputs to bottom of the model. [batch_size, decoder_length,
hidden_dim]
encoder_output: Encoder representation. [batch_size, input_length,
hidden_dim]
encoder_decoder_attention_bias: Bias and mask weights for encoder-decoder
attention. [batch_size, input_length]
decoder_self_attention_bias: Bias and mask weights for decoder
self-attention. [batch_size, decoder_length]
hparams: Hyperparmeters for model.
cache: Dict, containing tensors which are the results of previous
attentions, used for fast decoding.
nonpadding: Optional Tensor with shape [batch_size, decoder_length]
losses: Unused losses.
Returns:
Final decoder representation. [batch_size, decoder_length, hidden_dim]
"""
decoder_input = tf.nn.dropout(decoder_input,
1.0 - hparams.layer_prepostprocess_dropout)
decoder_output = self._decoder(
decoder_input,
encoder_output,
decoder_self_attention_bias,
encoder_decoder_attention_bias,
hparams,
cache=cache,
nonpadding=nonpadding,
save_weights_to=self.attention_weights)
if (common_layers.is_xla_compiled() and
hparams.mode == tf.estimator.ModeKeys.TRAIN):
# TPU does not react kindly to extra dimensions.
return decoder_output
# Expand since t2t expects 4d tensors.
return tf.expand_dims(decoder_output, axis=2)
示例7: encode
# 需要導入模塊: from tensor2tensor.layers import common_layers [as 別名]
# 或者: from tensor2tensor.layers.common_layers import is_xla_compiled [as 別名]
def encode(self, inputs, target_space, hparams, features=None, losses=None):
"""Encode transformer inputs.
Args:
inputs: Transformer inputs [batch_size, input_length, 1, hidden_dim] which
will be flattened along the two spatial dimensions.
target_space: scalar, target space ID.
hparams: hyperparameters for model.
features: optionally pass the entire features dictionary as well.
This is needed now for "packed" datasets.
losses: optional list onto which to append extra training losses
Returns:
Tuple of:
encoder_output: Encoder representation.
[batch_size, input_length, hidden_dim]
encoder_decoder_attention_bias: Bias and mask weights for
encoder-decoder attention. [batch_size, input_length]
"""
inputs = common_layers.flatten4d3d(inputs)
encoder_input, self_attention_bias, encoder_decoder_attention_bias = (
transformer_prepare_encoder(
inputs, target_space, hparams, features=features))
mlperf_log.transformer_print(
key=mlperf_log.MODEL_HP_LAYER_POSTPROCESS_DROPOUT,
value=hparams.layer_prepostprocess_dropout,
hparams=hparams)
encoder_input = tf.nn.dropout(encoder_input,
1.0 - hparams.layer_prepostprocess_dropout)
encoder_output = transformer_encoder(
encoder_input,
self_attention_bias,
hparams,
nonpadding=features_to_nonpadding(features, "inputs"),
save_weights_to=self.attention_weights,
make_image_summary=not common_layers.is_xla_compiled(),
losses=losses)
return encoder_output, encoder_decoder_attention_bias
示例8: decode
# 需要導入模塊: from tensor2tensor.layers import common_layers [as 別名]
# 或者: from tensor2tensor.layers.common_layers import is_xla_compiled [as 別名]
def decode(self,
decoder_input,
encoder_output,
encoder_decoder_attention_bias,
decoder_self_attention_bias,
hparams,
cache=None,
decode_loop_step=None,
nonpadding=None,
losses=None):
"""Decode Transformer outputs from encoder representation.
Args:
decoder_input: inputs to bottom of the model.
[batch_size, decoder_length, hidden_dim]
encoder_output: Encoder representation.
[batch_size, input_length, hidden_dim]
encoder_decoder_attention_bias: Bias and mask weights for
encoder-decoder attention. [batch_size, input_length]
decoder_self_attention_bias: Bias and mask weights for decoder
self-attention. [batch_size, decoder_length]
hparams: hyperparameters for model.
cache: dict, containing tensors which are the results of previous
attentions, used for fast decoding.
decode_loop_step: An integer, step number of the decoding loop.
Only used for inference on TPU.
nonpadding: optional Tensor with shape [batch_size, decoder_length]
losses: optional list onto which to append extra training losses
Returns:
Final decoder representation. [batch_size, decoder_length, hidden_dim]
"""
mlperf_log.transformer_print(
key=mlperf_log.MODEL_HP_LAYER_POSTPROCESS_DROPOUT,
value=hparams.layer_prepostprocess_dropout,
hparams=hparams)
decoder_input = tf.nn.dropout(decoder_input,
1.0 - hparams.layer_prepostprocess_dropout)
decoder_output = transformer_decoder(
decoder_input,
encoder_output,
decoder_self_attention_bias,
encoder_decoder_attention_bias,
hparams,
cache=cache,
decode_loop_step=decode_loop_step,
nonpadding=nonpadding,
save_weights_to=self.attention_weights,
losses=losses)
if (common_layers.is_xla_compiled() and
hparams.mode == tf.estimator.ModeKeys.TRAIN):
# TPU does not react kindly to extra dimensions.
# TODO(noam): remove this once TPU is more forgiving of extra dims.
return decoder_output
else:
# Expand since t2t expects 4d tensors.
return tf.expand_dims(decoder_output, axis=2)