當前位置: 首頁>>代碼示例>>Python>>正文


Python common_layers.dense方法代碼示例

本文整理匯總了Python中tensor2tensor.layers.common_layers.dense方法的典型用法代碼示例。如果您正苦於以下問題:Python common_layers.dense方法的具體用法?Python common_layers.dense怎麽用?Python common_layers.dense使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensor2tensor.layers.common_layers的用法示例。


在下文中一共展示了common_layers.dense方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: update_hparams_for_vq_gating

# 需要導入模塊: from tensor2tensor.layers import common_layers [as 別名]
# 或者: from tensor2tensor.layers.common_layers import dense [as 別名]
def update_hparams_for_vq_gating(hparams):
  """VQ Gating hparams."""
  hparams.add_hparam("z_size", 4)
  hparams.add_hparam("noise_dev", 0.5)
  # Bottleneck kinds supported: dense, vae, dvq.
  hparams.add_hparam("bottleneck_kind", "dvq")
  hparams.add_hparam("num_blocks", 1)
  hparams.add_hparam("num_residuals", 1)
  # Reshape method for DVQ: slice, project
  hparams.add_hparam("beta", 0.25)
  hparams.add_hparam("epsilon", 1e-5)
  hparams.add_hparam("decay", 0.999)
  hparams.add_hparam("ema", False)  # default is false until ema is implemented
  hparams.add_hparam("random_top_k", 1)
  hparams.add_hparam("soft_em", False)
  hparams.add_hparam("num_samples", 10)
  hparams.add_hparam("gating_type", "vq")
  hparams.add_hparam("use_scales", int(True))
  hparams.add_hparam("residual_centroids", int(False)) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:21,代碼來源:expert_utils.py

示例2: vae

# 需要導入模塊: from tensor2tensor.layers import common_layers [as 別名]
# 或者: from tensor2tensor.layers.common_layers import dense [as 別名]
def vae(x, z_size, name=None):
  """Simple variational autoencoder without discretization.

  Args:
    x: Input to the discretization bottleneck.
    z_size: Number of bits, where discrete codes range from 1 to 2**z_size.
    name: Name for the bottleneck scope.

  Returns:
    Embedding function, latent, loss, mu and log_simga.
  """
  with tf.variable_scope(name, default_name="vae"):
    mu = tf.layers.dense(x, z_size, name="mu")
    log_sigma = tf.layers.dense(x, z_size, name="log_sigma")
    shape = common_layers.shape_list(x)
    epsilon = tf.random_normal([shape[0], shape[1], 1, z_size])
    z = mu + tf.exp(log_sigma / 2) * epsilon
    kl = 0.5 * tf.reduce_mean(
        tf.expm1(log_sigma) + tf.square(mu) - log_sigma, axis=-1)
    free_bits = z_size // 4
    kl_loss = tf.reduce_mean(tf.maximum(kl - free_bits, 0.0))
    return z, kl_loss, mu, log_sigma 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:24,代碼來源:discretization.py

示例3: tanh_discrete_bottleneck

# 需要導入模塊: from tensor2tensor.layers import common_layers [as 別名]
# 或者: from tensor2tensor.layers.common_layers import dense [as 別名]
def tanh_discrete_bottleneck(x, bottleneck_bits, bottleneck_noise,
                             discretize_warmup_steps, mode):
  """Simple discretization through tanh, flip bottleneck_noise many bits."""
  x = tf.layers.dense(x, bottleneck_bits, name="tanh_discrete_bottleneck")
  d0 = tf.stop_gradient(2.0 * tf.to_float(tf.less(0.0, x))) - 1.0
  if mode == tf.estimator.ModeKeys.TRAIN:
    x += tf.truncated_normal(
        common_layers.shape_list(x), mean=0.0, stddev=0.2)
  x = tf.tanh(x)
  d = x + tf.stop_gradient(2.0 * tf.to_float(tf.less(0.0, x)) - 1.0 - x)
  if mode == tf.estimator.ModeKeys.TRAIN:
    noise = tf.random_uniform(common_layers.shape_list(x))
    noise = 2.0 * tf.to_float(tf.less(bottleneck_noise, noise)) - 1.0
    d *= noise
  d = common_layers.mix(d, x, discretize_warmup_steps,
                        mode == tf.estimator.ModeKeys.TRAIN)
  return d, d0 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:19,代碼來源:discretization.py

示例4: vae

# 需要導入模塊: from tensor2tensor.layers import common_layers [as 別名]
# 或者: from tensor2tensor.layers.common_layers import dense [as 別名]
def vae(x, z_size, name=None):
  """Simple variational autoencoder without discretization.

  Args:
    x: Input to the discretization bottleneck.
    z_size: Number of bits, where discrete codes range from 1 to 2**z_size.
    name: Name for the bottleneck scope.

  Returns:
    Embedding function, latent, loss, mu and log_simga.
  """
  with tf.variable_scope(name, default_name="vae"):
    mu = tf.layers.dense(x, z_size, name="mu")
    log_sigma = tf.layers.dense(x, z_size, name="log_sigma")
    shape = common_layers.shape_list(x)
    epsilon = tf.random_normal([shape[0], shape[1], 1, z_size])
    z = mu + tf.exp(log_sigma / 2) * epsilon
    kl = 0.5 * tf.reduce_mean(
        tf.exp(log_sigma) + tf.square(mu) - 1. - log_sigma, axis=-1)
    free_bits = z_size // 4
    kl_loss = tf.reduce_mean(tf.maximum(kl - free_bits, 0.0))
    return z, kl_loss, mu, log_sigma 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:24,代碼來源:discretization.py

示例5: step_preprocess

# 需要導入模塊: from tensor2tensor.layers import common_layers [as 別名]
# 或者: from tensor2tensor.layers.common_layers import dense [as 別名]
def step_preprocess(x, step, hparams):
  """Preprocess the input at the beginning of each step.

  Args:
    x: input tensor
    step: step
    hparams: model hyper-parameters

  Returns:
    preprocessed input.

  """
  original_channel_size = common_layers.shape_list(x)[-1]

  if hparams.add_position_timing_signal:
    x = add_position_timing_signal(x, step, hparams)

  if hparams.add_step_timing_signal:
    x = add_step_timing_signal(x, step, hparams)

  if ((hparams.add_position_timing_signal or hparams.add_position_timing_signal)
      and hparams.add_or_concat_timing_signal == "concat"):
    # linear projection to the original dimension of x
    x = common_layers.dense(
        x, original_channel_size, activation=None, use_bias=False)

  if hparams.add_sru:
    x = common_layers.sru(x)

  return x 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:32,代碼來源:universal_transformer_util.py

示例6: compute_attention_component

# 需要導入模塊: from tensor2tensor.layers import common_layers [as 別名]
# 或者: from tensor2tensor.layers.common_layers import dense [as 別名]
def compute_attention_component(antecedent,
                                total_depth,
                                filter_width=1,
                                padding="VALID",
                                name="c",
                                vars_3d_num_heads=0):
  """Computes attention compoenent (query, key or value).

  Args:
    antecedent: a Tensor with shape [batch, length, channels]
    total_depth: an integer
    filter_width: An integer specifying how wide you want the attention
      component to be.
    padding: One of "VALID", "SAME" or "LEFT". Default is VALID: No padding.
    name: a string specifying scope name.
    vars_3d_num_heads: an optional integer (if we want to use 3d variables)

  Returns:
    c : [batch, length, depth] tensor
  """
  if vars_3d_num_heads > 0:
    assert filter_width == 1
    input_depth = antecedent.get_shape().as_list()[-1]
    depth_per_head = total_depth // vars_3d_num_heads
    initializer_stddev = input_depth ** -0.5
    if "q" in name:
      initializer_stddev *= depth_per_head ** -0.5
    var = tf.get_variable(
        name, [input_depth,
               vars_3d_num_heads,
               total_depth // vars_3d_num_heads],
        initializer=tf.random_normal_initializer(stddev=initializer_stddev))
    var = tf.cast(var, antecedent.dtype)
    var = tf.reshape(var, [input_depth, total_depth])
    return tf.tensordot(antecedent, var, axes=1)
  if filter_width == 1:
    return common_layers.dense(
        antecedent, total_depth, use_bias=False, name=name)
  else:
    return common_layers.conv1d(
        antecedent, total_depth, filter_width, padding, name=name) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:43,代碼來源:common_attention.py

示例7: mlp

# 需要導入模塊: from tensor2tensor.layers import common_layers [as 別名]
# 或者: from tensor2tensor.layers.common_layers import dense [as 別名]
def mlp(feature, hparams, name="mlp"):
  """Multi layer perceptron with dropout and relu activation."""
  with tf.variable_scope(name, "mlp", values=[feature]):
    num_mlp_layers = hparams.num_mlp_layers
    mlp_dim = hparams.mlp_dim
    for _ in range(num_mlp_layers):
      feature = common_layers.dense(feature, mlp_dim, activation=tf.nn.relu)
      feature = tf.nn.dropout(feature, keep_prob=1.-hparams.dropout)
    return feature 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:11,代碼來源:vqa_attention.py

示例8: mlp

# 需要導入模塊: from tensor2tensor.layers import common_layers [as 別名]
# 或者: from tensor2tensor.layers.common_layers import dense [as 別名]
def mlp(feature, hparams, name="mlp"):
  """Multi layer perceptron with dropout and relu activation."""
  with tf.variable_scope(name, "mlp", values=[feature]):
    num_mlp_layers = hparams.num_mlp_layers
    mlp_size = hparams.mlp_size
    for _ in range(num_mlp_layers):
      feature = common_layers.dense(feature, mlp_size, activation=None)
      utils.collect_named_outputs("norms", "mlp_feature",
                                  tf.norm(feature, axis=-1))
      feature = common_layers.layer_norm(feature)
      feature = tf.nn.relu(feature)
      feature = tf.nn.dropout(feature, keep_prob=1.-hparams.dropout)
    return feature 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:15,代碼來源:vqa_self_attention.py

示例9: testDenseWithLayerCollection

# 需要導入模塊: from tensor2tensor.layers import common_layers [as 別名]
# 或者: from tensor2tensor.layers.common_layers import dense [as 別名]
def testDenseWithLayerCollection(self):
    with tf.variable_scope("test_layer_collection"):
      x1 = tf.zeros([3, 4], tf.float32)
      layer_collection = kfac.LayerCollection()
      common_layers.dense(
          x1, units=10, layer_collection=layer_collection, name="y1")
      self.assertLen(layer_collection.get_blocks(), 1)

      # 3D inputs.
      x2 = tf.zeros([3, 4, 5], tf.float32)
      common_layers.dense(
          x2, units=10, layer_collection=layer_collection, name="y2")
      self.assertLen(layer_collection.get_blocks(), 2) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:15,代碼來源:common_layers_test.py

示例10: int_to_bit_embed

# 需要導入模塊: from tensor2tensor.layers import common_layers [as 別名]
# 或者: from tensor2tensor.layers.common_layers import dense [as 別名]
def int_to_bit_embed(x_int, num_bits, embedding_size, base=2):
  """Turn x_int into a bitwise (lower-endian) tensor and embed densly."""
  shape = common_layers.shape_list(x_int)
  inputs = int_to_bit(x_int, num_bits, base=base)
  inputs = tf.reshape(inputs, shape[:-1] + [shape[-1] * 8])
  inputs = 2.0 * tf.to_float(inputs) - 1.0  # Move from 0/1 to -1/1.
  return tf.layers.dense(inputs, embedding_size, name="int_to_bit_embed") 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:9,代碼來源:discretization.py

示例11: tanh_discrete_unbottleneck

# 需要導入模塊: from tensor2tensor.layers import common_layers [as 別名]
# 或者: from tensor2tensor.layers.common_layers import dense [as 別名]
def tanh_discrete_unbottleneck(x, hidden_size):
  """Simple un-discretization from tanh."""
  x = tf.layers.dense(x, hidden_size, name="tanh_discrete_unbottleneck")
  return x 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:6,代碼來源:discretization.py

示例12: isemhash_bottleneck

# 需要導入模塊: from tensor2tensor.layers import common_layers [as 別名]
# 或者: from tensor2tensor.layers.common_layers import dense [as 別名]
def isemhash_bottleneck(x,
                        bottleneck_bits,
                        bottleneck_noise,
                        discretize_warmup_steps,
                        mode,
                        isemhash_noise_dev=0.5,
                        isemhash_mix_prob=0.5):
  """Improved semantic hashing bottleneck."""
  with tf.variable_scope("isemhash_bottleneck"):
    x = tf.layers.dense(x, bottleneck_bits, name="dense")
    y = common_layers.saturating_sigmoid(x)
    if isemhash_noise_dev > 0 and mode == tf.estimator.ModeKeys.TRAIN:
      noise = tf.truncated_normal(
          common_layers.shape_list(x), mean=0.0, stddev=isemhash_noise_dev)
      y = common_layers.saturating_sigmoid(x + noise)
    d = tf.to_float(tf.less(0.5, y)) + y - tf.stop_gradient(y)
    d = 2.0 * d - 1.0  # Move from [0, 1] to [-1, 1].
    if mode == tf.estimator.ModeKeys.TRAIN:  # Flip some bits.
      noise = tf.random_uniform(common_layers.shape_list(x))
      noise = 2.0 * tf.to_float(tf.less(bottleneck_noise, noise)) - 1.0
      d *= noise
      d = common_layers.mix(
          d,
          2.0 * y - 1.0,
          discretize_warmup_steps,
          mode == tf.estimator.ModeKeys.TRAIN,
          max_prob=isemhash_mix_prob)
    return d, 0.0 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:30,代碼來源:discretization.py

示例13: isemhash_unbottleneck

# 需要導入模塊: from tensor2tensor.layers import common_layers [as 別名]
# 或者: from tensor2tensor.layers.common_layers import dense [as 別名]
def isemhash_unbottleneck(x, hidden_size, isemhash_filter_size_multiplier=1.0):
  """Improved semantic hashing un-bottleneck."""
  filter_size = int(hidden_size * isemhash_filter_size_multiplier)
  x = 0.5 * (x - 1.0)  # Move from [-1, 1] to [0, 1].
  with tf.variable_scope("isemhash_unbottleneck"):
    h1a = tf.layers.dense(x, filter_size, name="hidden1a")
    h1b = tf.layers.dense(1.0 - x, filter_size, name="hidden1b")
    h2 = tf.layers.dense(tf.nn.relu(h1a + h1b), filter_size, name="hidden2")
    return tf.layers.dense(tf.nn.relu(h2), hidden_size, name="final") 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:11,代碼來源:discretization.py


注:本文中的tensor2tensor.layers.common_layers.dense方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。