當前位置: 首頁>>代碼示例>>Python>>正文


Python common_layers.comma_separated_string_to_integer_list方法代碼示例

本文整理匯總了Python中tensor2tensor.layers.common_layers.comma_separated_string_to_integer_list方法的典型用法代碼示例。如果您正苦於以下問題:Python common_layers.comma_separated_string_to_integer_list方法的具體用法?Python common_layers.comma_separated_string_to_integer_list怎麽用?Python common_layers.comma_separated_string_to_integer_list使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensor2tensor.layers.common_layers的用法示例。


在下文中一共展示了common_layers.comma_separated_string_to_integer_list方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: body

# 需要導入模塊: from tensor2tensor.layers import common_layers [as 別名]
# 或者: from tensor2tensor.layers.common_layers import comma_separated_string_to_integer_list [as 別名]
def body(self, features):
    assert self._hparams.block_size > 0
    assert not common_layers.is_xla_compiled()
    assert "targets_segmentation" not in features

    decoder_output = super(TransformerBlockParallel, self).body(features)
    assert not isinstance(decoder_output, tuple)
    assert len(decoder_output.shape) == 4

    relu_dropout_broadcast_dims = (
        common_layers.comma_separated_string_to_integer_list(
            getattr(self._hparams, "relu_dropout_broadcast_dims", "")))

    with tf.variable_scope("block_size_%d" % self._hparams.block_size):
      block_output = common_layers.dense_relu_dense(
          decoder_output,
          self._hparams.block_size * self._hparams.filter_size,
          self._hparams.block_size * self._hparams.hidden_size,
          dropout=self._hparams.relu_dropout,
          dropout_broadcast_dims=relu_dropout_broadcast_dims)

    batch_size, length = common_layers.shape_list(decoder_output)[:2]
    block_output = tf.reshape(block_output, [
        batch_size,
        length,
        self._hparams.block_size,
        self._hparams.hidden_size
    ])

    block_output = common_layers.layer_postprocess(
        decoder_output, block_output, self._hparams)

    return block_output 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:35,代碼來源:transformer_parallel.py

示例2: recurrent_transformer_decoder

# 需要導入模塊: from tensor2tensor.layers import common_layers [as 別名]
# 或者: from tensor2tensor.layers.common_layers import comma_separated_string_to_integer_list [as 別名]
def recurrent_transformer_decoder(
    decoder_input,
    encoder_output,
    decoder_self_attention_bias,
    encoder_decoder_attention_bias,
    hparams,
    name="decoder",
    nonpadding=None,
    save_weights_to=None,
    make_image_summary=True):
  """Recurrent decoder function."""
  x = decoder_input
  attention_dropout_broadcast_dims = (
      common_layers.comma_separated_string_to_integer_list(
          getattr(hparams, "attention_dropout_broadcast_dims", "")))
  with tf.variable_scope(name):
    ffn_unit = functools.partial(
        # use encoder ffn, since decoder ffn use left padding
        universal_transformer_util.transformer_encoder_ffn_unit,
        hparams=hparams,
        nonpadding_mask=nonpadding)

    attention_unit = functools.partial(
        universal_transformer_util.transformer_decoder_attention_unit,
        hparams=hparams,
        encoder_output=encoder_output,
        decoder_self_attention_bias=decoder_self_attention_bias,
        encoder_decoder_attention_bias=encoder_decoder_attention_bias,
        attention_dropout_broadcast_dims=attention_dropout_broadcast_dims,
        save_weights_to=save_weights_to,
        make_image_summary=make_image_summary)

    x, extra_output = universal_transformer_util.universal_transformer_layer(
        x, hparams, ffn_unit, attention_unit)

    return common_layers.layer_preprocess(x, hparams), extra_output 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:38,代碼來源:vqa_recurrent_self_attention.py

示例3: universal_transformer_decoder

# 需要導入模塊: from tensor2tensor.layers import common_layers [as 別名]
# 或者: from tensor2tensor.layers.common_layers import comma_separated_string_to_integer_list [as 別名]
def universal_transformer_decoder(decoder_input,
                                  encoder_output,
                                  decoder_self_attention_bias,
                                  encoder_decoder_attention_bias,
                                  hparams,
                                  name="decoder",
                                  nonpadding=None,
                                  save_weights_to=None,
                                  make_image_summary=True):
  """Universal Transformer decoder function.

  Prepares all the arguments and the inputs and passes it to a
  core_universal_transformer_layer to decoder.

  Args:
    decoder_input: a Tensor
    encoder_output: a Tensor
    decoder_self_attention_bias: bias Tensor for self-attention
      (see common_attention.attention_bias())
    encoder_decoder_attention_bias: bias Tensor for encoder-decoder attention
      (see common_attention.attention_bias())
    hparams: hyperparameters for model
    name: a string
    nonpadding: optional Tensor with shape [batch_size, encoder_length]
      indicating what positions are not padding.  This is used
      to mask out padding in convoltutional layers.  We generally only
      need this mask for "packed" datasets, because for ordinary datasets,
      no padding is ever followed by nonpadding.
    save_weights_to: an optional dictionary to capture attention weights
      for vizualization; the weights tensor will be appended there under
      a string key created from the variable scope (including name).
    make_image_summary: Whether to make an attention image summary.

  Returns:
    y: the output Tensors
    extra_output: which can be used to pass extra information to the body
  """
  x = decoder_input
  attention_dropout_broadcast_dims = (
      common_layers.comma_separated_string_to_integer_list(
          getattr(hparams, "attention_dropout_broadcast_dims", "")))
  with tf.variable_scope(name):
    ffn_unit = functools.partial(
        transformer_decoder_ffn_unit,
        hparams=hparams,
        nonpadding_mask=nonpadding)

    attention_unit = functools.partial(
        transformer_decoder_attention_unit,
        hparams=hparams,
        encoder_output=encoder_output,
        decoder_self_attention_bias=decoder_self_attention_bias,
        encoder_decoder_attention_bias=encoder_decoder_attention_bias,
        attention_dropout_broadcast_dims=attention_dropout_broadcast_dims,
        save_weights_to=save_weights_to,
        make_image_summary=make_image_summary)

    x, extra_output = universal_transformer_layer(
        x, hparams, ffn_unit, attention_unit)

    return common_layers.layer_preprocess(x, hparams), extra_output 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:63,代碼來源:universal_transformer_util.py


注:本文中的tensor2tensor.layers.common_layers.comma_separated_string_to_integer_list方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。