當前位置: 首頁>>代碼示例>>Python>>正文


Python common_attention.multihead_attention方法代碼示例

本文整理匯總了Python中tensor2tensor.layers.common_attention.multihead_attention方法的典型用法代碼示例。如果您正苦於以下問題:Python common_attention.multihead_attention方法的具體用法?Python common_attention.multihead_attention怎麽用?Python common_attention.multihead_attention使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensor2tensor.layers.common_attention的用法示例。


在下文中一共展示了common_attention.multihead_attention方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: encdec_attention_1d

# 需要導入模塊: from tensor2tensor.layers import common_attention [as 別名]
# 或者: from tensor2tensor.layers.common_attention import multihead_attention [as 別名]
def encdec_attention_1d(x,
                        encoder_output,
                        encoder_decoder_attention_bias,
                        hparams):
  """Local 1d self attention."""
  x, x_shape, is_4d = maybe_reshape_4d_to_3d(x)
  encoder_output, _, _ = maybe_reshape_4d_to_3d(encoder_output)
  with tf.variable_scope("encdec_attention"):
    # Encoder Decoder attention
    y = common_attention.multihead_attention(
        x,
        encoder_output,
        encoder_decoder_attention_bias,
        hparams.attention_key_channels or hparams.hidden_size,
        hparams.attention_value_channels or hparams.hidden_size,
        hparams.hidden_size,
        hparams.num_heads,
        hparams.attention_dropout,
        name="encdec_attention")
  if is_4d:
    y = tf.reshape(y, x_shape)
    y.set_shape([None, None, None, hparams.hidden_size])
  return y 
開發者ID:mlperf,項目名稱:training_results_v0.5,代碼行數:25,代碼來源:common_image_attention.py

示例2: attend

# 需要導入模塊: from tensor2tensor.layers import common_attention [as 別名]
# 或者: from tensor2tensor.layers.common_attention import multihead_attention [as 別名]
def attend(x, source, hparams, name):
  """Self-attention layer with source as memory antecedent."""
  with tf.variable_scope(name):
    x = tf.squeeze(x, axis=2)
    if len(source.get_shape()) > 3:
      source = tf.squeeze(source, axis=2)
    source = common_attention.add_timing_signal_1d(source)
    y = common_attention.multihead_attention(
        common_layers.layer_preprocess(x, hparams), source, None,
        hparams.attention_key_channels or hparams.hidden_size,
        hparams.attention_value_channels or hparams.hidden_size,
        hparams.hidden_size, hparams.num_heads,
        hparams.attention_dropout)
    res = common_layers.layer_postprocess(x, y, hparams)
    return tf.expand_dims(res, axis=2) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:17,代碼來源:transformer_vae.py

示例3: transformer_encoder_attention_unit

# 需要導入模塊: from tensor2tensor.layers import common_attention [as 別名]
# 或者: from tensor2tensor.layers.common_attention import multihead_attention [as 別名]
def transformer_encoder_attention_unit(x,
                                       hparams,
                                       encoder_self_attention_bias,
                                       attention_dropout_broadcast_dims,
                                       save_weights_to=None,
                                       make_image_summary=True):
  """Applies multihead attention function which is parametrised for encoding.

  Args:
    x: input
    hparams: model hyper-parameters
    encoder_self_attention_bias: a bias tensor for use in encoder self-attention
    attention_dropout_broadcast_dims: Fpr noise broadcasting in the dropout
      layers to save memory during training
    save_weights_to: an optional dictionary to capture attention weights for
      visualization; the weights tensor will be appended there under a string
      key created from the variable scope (including name).
    make_image_summary: Whether to make an attention image summary.

  Returns:
    the output tensor

  """

  with tf.variable_scope("self_attention"):
    y = common_attention.multihead_attention(
        common_layers.layer_preprocess(x, hparams),
        None,
        encoder_self_attention_bias,
        hparams.attention_key_channels or hparams.hidden_size,
        hparams.attention_value_channels or hparams.hidden_size,
        hparams.hidden_size,
        hparams.num_heads,
        hparams.attention_dropout,
        attention_type=hparams.self_attention_type,
        save_weights_to=save_weights_to,
        max_relative_position=hparams.max_relative_position,
        make_image_summary=make_image_summary,
        dropout_broadcast_dims=attention_dropout_broadcast_dims)
    x = common_layers.layer_postprocess(x, y, hparams)
  return x 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:43,代碼來源:universal_transformer_util.py

示例4: attention_lm_decoder

# 需要導入模塊: from tensor2tensor.layers import common_attention [as 別名]
# 或者: from tensor2tensor.layers.common_attention import multihead_attention [as 別名]
def attention_lm_decoder(decoder_input,
                         decoder_self_attention_bias,
                         hparams,
                         name="decoder"):
  """A stack of attention_lm layers.

  Args:
    decoder_input: a Tensor
    decoder_self_attention_bias: bias Tensor for self-attention
      (see common_attention.attention_bias())
    hparams: hyperparameters for model
    name: a string

  Returns:
    y: a Tensors
  """
  x = decoder_input
  with tf.variable_scope(name):
    for layer in range(hparams.num_hidden_layers):
      with tf.variable_scope("layer_%d" % layer):
        with tf.variable_scope("self_attention"):
          y = common_attention.multihead_attention(
              common_layers.layer_preprocess(
                  x, hparams), None, decoder_self_attention_bias,
              hparams.attention_key_channels or hparams.hidden_size,
              hparams.attention_value_channels or hparams.hidden_size,
              hparams.hidden_size, hparams.num_heads, hparams.attention_dropout)
          x = common_layers.layer_postprocess(x, y, hparams)
        with tf.variable_scope("ffn"):
          y = common_layers.conv_hidden_relu(
              common_layers.layer_preprocess(x, hparams),
              hparams.filter_size,
              hparams.hidden_size,
              dropout=hparams.relu_dropout)
          x = common_layers.layer_postprocess(x, y, hparams)
    return common_layers.layer_preprocess(x, hparams) 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:38,代碼來源:attention_lm.py

示例5: local_within_block_attention

# 需要導入模塊: from tensor2tensor.layers import common_attention [as 別名]
# 或者: from tensor2tensor.layers.common_attention import multihead_attention [as 別名]
def local_within_block_attention(x,
                                 self_attention_bias,
                                 hparams,
                                 attention_type="local_within_block_mask_right",
                                 q_padding="VALID",
                                 kv_padding="VALID"):
  """Local within block self attention."""
  x_new, x_shape, is_4d = maybe_reshape_4d_to_3d(x)
  with tf.variable_scope("local_within_block"):
    y = common_attention.multihead_attention(
        common_layers.layer_preprocess(x_new, hparams),
        None,
        self_attention_bias,
        hparams.attention_key_channels or hparams.hidden_size,
        hparams.attention_value_channels or hparams.hidden_size,
        hparams.hidden_size,
        hparams.num_heads,
        hparams.attention_dropout,
        attention_type=attention_type,
        block_width=hparams.block_width,
        block_length=hparams.block_length,
        q_padding=q_padding,
        kv_padding=kv_padding,
        q_filter_width=hparams.q_filter_width,
        kv_filter_width=hparams.kv_filter_width,
        name="local_within_block")
    if is_4d:
      y = tf.reshape(y, x_shape)
    return y 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:31,代碼來源:common_image_attention.py

示例6: local_attention_1d

# 需要導入模塊: from tensor2tensor.layers import common_attention [as 別名]
# 或者: from tensor2tensor.layers.common_attention import multihead_attention [as 別名]
def local_attention_1d(x,
                       hparams,
                       attention_type="local_unmasked",
                       q_padding="VALID",
                       kv_padding="VALID"):
  """Local 1d self attention."""
  # self-attention
  x, x_shape, is_4d = maybe_reshape_4d_to_3d(x)
  with tf.variable_scope("local_1d_self_att"):
    y = common_attention.multihead_attention(
        x,
        None,
        None,
        hparams.attention_key_channels or hparams.hidden_size,
        hparams.attention_value_channels or hparams.hidden_size,
        hparams.hidden_size,
        hparams.num_heads,
        hparams.attention_dropout,
        attention_type=attention_type,
        shared_rel=hparams.shared_rel,
        block_width=hparams.block_width,
        block_length=hparams.block_length,
        q_padding=q_padding,
        kv_padding=kv_padding,
        q_filter_width=hparams.q_filter_width,
        kv_filter_width=hparams.kv_filter_width,
        make_image_summary=False,
        name="self_attention")
    if is_4d:
      y = tf.reshape(y, x_shape)
    return y 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:33,代碼來源:common_image_attention.py

示例7: dilated_attention_1d

# 需要導入模塊: from tensor2tensor.layers import common_attention [as 別名]
# 或者: from tensor2tensor.layers.common_attention import multihead_attention [as 別名]
def dilated_attention_1d(x,
                         hparams,
                         attention_type="masked_dilated_1d",
                         q_padding="VALID",
                         kv_padding="VALID",
                         gap_size=2):
  """Dilated 1d self attention."""
  # self-attention
  x, x_shape, is_4d = maybe_reshape_4d_to_3d(x)
  with tf.variable_scope("masked_dilated_1d"):
    y = common_attention.multihead_attention(
        x,
        None,
        None,
        hparams.attention_key_channels or hparams.hidden_size,
        hparams.attention_value_channels or hparams.hidden_size,
        hparams.hidden_size,
        hparams.num_heads,
        hparams.attention_dropout,
        attention_type=attention_type,
        block_width=hparams.block_width,
        block_length=hparams.block_length,
        q_padding=q_padding,
        kv_padding=kv_padding,
        q_filter_width=hparams.q_filter_width,
        kv_filter_width=hparams.kv_filter_width,
        gap_size=gap_size,
        num_memory_blocks=hparams.num_memory_blocks,
        name="self_attention")
    if is_4d:
      y = tf.reshape(y, x_shape)
      y.set_shape([None, None, None, hparams.hidden_size])
    return y 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:35,代碼來源:common_image_attention.py

示例8: full_self_attention

# 需要導入模塊: from tensor2tensor.layers import common_attention [as 別名]
# 或者: from tensor2tensor.layers.common_attention import multihead_attention [as 別名]
def full_self_attention(x,
                        self_attention_bias,
                        hparams,
                        q_padding="LEFT",
                        kv_padding="LEFT"):
  """Full self-attention layer."""
  x, x_shape, is_4d = maybe_reshape_4d_to_3d(x)
  if self_attention_bias is not None:
    self_attention_bias = get_self_attention_bias(x)
  with tf.variable_scope("self_att"):
    y = common_attention.multihead_attention(
        x,
        None,
        self_attention_bias,
        hparams.attention_key_channels or hparams.hidden_size,
        hparams.attention_value_channels or hparams.hidden_size,
        hparams.hidden_size,
        hparams.num_heads,
        hparams.attention_dropout,
        q_filter_width=hparams.q_filter_width,
        kv_filter_width=hparams.kv_filter_width,
        q_padding=q_padding,
        kv_padding=kv_padding,
        name="self_att")
    if is_4d:
      y = tf.reshape(y, [x_shape[0], x_shape[1], x_shape[2], x_shape[3]])
      y.set_shape([None, None, None, hparams.hidden_size])
    return y 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:30,代碼來源:common_image_attention.py

示例9: _add_attend_to_encoder_cache

# 需要導入模塊: from tensor2tensor.layers import common_attention [as 別名]
# 或者: from tensor2tensor.layers.common_attention import multihead_attention [as 別名]
def _add_attend_to_encoder_cache(cache, attention_name, hparams, num_layers,
                                 key_channels, value_channels,
                                 vars_3d_num_heads, scope_prefix,
                                 encoder_output):
  """Add attend-to-encoder layers to cache."""
  for layer in range(num_layers):
    layer_name = "layer_%d" % layer
    with tf.variable_scope("%sdecoder/%s/%s/multihead_attention" %
                           (scope_prefix, layer_name, attention_name)):
      k_encdec = common_attention.compute_attention_component(
          encoder_output,
          key_channels,
          name="k",
          vars_3d_num_heads=vars_3d_num_heads)
      k_encdec = common_attention.split_heads(k_encdec, hparams.num_heads)
      v_encdec = common_attention.compute_attention_component(
          encoder_output,
          value_channels,
          name="v",
          vars_3d_num_heads=vars_3d_num_heads)
      v_encdec = common_attention.split_heads(v_encdec, hparams.num_heads)
    cache[layer_name][attention_name] = {
        "k_encdec": k_encdec,
        "v_encdec": v_encdec
    }
  return cache 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:28,代碼來源:evolved_transformer.py

示例10: _apply_logic

# 需要導入模塊: from tensor2tensor.layers import common_attention [as 別名]
# 或者: from tensor2tensor.layers.common_attention import multihead_attention [as 別名]
def _apply_logic(self,
                   input_tensor,
                   output_depth,
                   hparams,
                   var_scope_suffix,
                   nonpadding,
                   mask_future,
                   decoder_self_attention_bias=None,
                   attention_dropout_broadcast_dims=None,
                   **kwargs):
    """Applies attention logic to `input_tensor`."""
    with tf.variable_scope("standard_attention_layer_" + var_scope_suffix):
      hidden_depth = int(
          input_tensor.shape.as_list()[-1] * self._hidden_dim_multiplier)

      attention_bias = decoder_self_attention_bias

      # TODO(davidso): This dropout rate differs from the other layers. This
      #                should be fixed so that they all use the same dropout
      #                rate.
      num_heads = self._num_heads
      if num_heads is None:
        num_heads = hparams.num_heads
      logic_output = common_attention.multihead_attention(
          input_tensor,
          None,
          attention_bias,
          hidden_depth,
          hidden_depth,
          output_depth,
          num_heads,
          hparams.attention_dropout,
          attention_type=hparams.self_attention_type,
          max_relative_position=hparams.max_relative_position,
          dropout_broadcast_dims=attention_dropout_broadcast_dims)
    return logic_output 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:38,代碼來源:nas_layers.py

示例11: testMultiheadAttentionWithLayerCollection

# 需要導入模塊: from tensor2tensor.layers import common_attention [as 別名]
# 或者: from tensor2tensor.layers.common_attention import multihead_attention [as 別名]
def testMultiheadAttentionWithLayerCollection(self):
    """Testing multihead attention with layer collection for kfac."""
    x = tf.zeros([3, 4, 5], tf.float32)
    layer_collection = kfac.LayerCollection()
    common_attention.multihead_attention(
        x, None, None, 10, 10, 10, 2, 0.2,
        layer_collection=layer_collection)
    self.assertLen(layer_collection.get_blocks(), 4) 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:10,代碼來源:common_attention_test.py


注:本文中的tensor2tensor.layers.common_attention.multihead_attention方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。