本文整理匯總了Python中tensor2tensor.layers.common_attention.get_timing_signal_1d方法的典型用法代碼示例。如果您正苦於以下問題:Python common_attention.get_timing_signal_1d方法的具體用法?Python common_attention.get_timing_signal_1d怎麽用?Python common_attention.get_timing_signal_1d使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensor2tensor.layers.common_attention
的用法示例。
在下文中一共展示了common_attention.get_timing_signal_1d方法的3個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: sinusoidal_positional_encoding
# 需要導入模塊: from tensor2tensor.layers import common_attention [as 別名]
# 或者: from tensor2tensor.layers.common_attention import get_timing_signal_1d [as 別名]
def sinusoidal_positional_encoding(
sequence_length, embed_size, name=None
):
"""
Sinusoidal positional encoding.
Args:
- sequence_length: length of the sequence.
- embed_size: size of the embedding.
- name: optional name.
Returns:
A positional encoding of size `[1, sequence_length, embed_size]`.
"""
with tf.variable_scope(
name, default_name='sinusoidal_positional_encoding'
):
return common_attention.get_timing_signal_1d(
sequence_length, embed_size
)
示例2: add_position_timing_signal
# 需要導入模塊: from tensor2tensor.layers import common_attention [as 別名]
# 或者: from tensor2tensor.layers.common_attention import get_timing_signal_1d [as 別名]
def add_position_timing_signal(x, step, hparams):
"""Add n-dimensional embedding as the position (horizontal) timing signal.
Args:
x: a tensor with shape [batch, length, depth]
step: step
hparams: model hyper parameters
Returns:
a Tensor with the same shape as x.
"""
if not hparams.position_start_index:
index = 0
elif hparams.position_start_index == "random":
# Shift all positions randomly
# TODO(dehghani): What would be reasonable for max number of shift?
index = tf.random_uniform(
[], maxval=common_layers.shape_list(x)[1], dtype=tf.int32)
elif hparams.position_start_index == "step":
# Shift positions based on the step
num_steps = (
hparams.act_max_steps
if hparams.recurrence_type == "act" else hparams.num_rec_steps)
index = tf.cast(
common_layers.shape_list(x)[1] * step / num_steps, dtype=tf.int32)
# No need for the timing signal in the encoder/decoder input preparation
assert hparams.pos is None
length = common_layers.shape_list(x)[1]
channels = common_layers.shape_list(x)[2]
signal = common_attention.get_timing_signal_1d(
length, channels, start_index=index)
if hparams.add_or_concat_timing_signal == "add":
x_with_timing = x + signal
elif hparams.add_or_concat_timing_signal == "concat":
batch_size = common_layers.shape_list(x)[0]
signal_tiled = tf.tile(signal, [batch_size, 1, 1])
x_with_timing = tf.concat((x, signal_tiled), axis=-1)
return x_with_timing
示例3: add_position_timing_signal
# 需要導入模塊: from tensor2tensor.layers import common_attention [as 別名]
# 或者: from tensor2tensor.layers.common_attention import get_timing_signal_1d [as 別名]
def add_position_timing_signal(x, step, hparams):
"""Add n-dimensional embedding as the position (horizontal) timing signal.
Args:
x: a tensor with shape [batch, length, depth]
step: step
hparams: model hyper parameters
Returns:
a Tensor with the same shape as x.
"""
if not hparams.position_start_index:
index = 0
elif hparams.position_start_index == "random":
# Shift all positions randomly
# TODO(dehghani): What would be reasonable for max number of shift?
index = tf.random_uniform(
[], maxval=common_layers.shape_list(x)[1], dtype=tf.int32)
elif hparams.position_start_index == "step":
# Shift positions based on the step
if hparams.recurrence_type == "act":
num_steps = hparams.act_max_steps
else:
num_steps = hparams.num_rec_steps
index = tf.cast(
common_layers.shape_list(x)[1] * step / num_steps, dtype=tf.int32)
# No need for the timing signal in the encoder/decoder input preparation
assert hparams.pos is None
length = common_layers.shape_list(x)[1]
channels = common_layers.shape_list(x)[2]
signal = common_attention.get_timing_signal_1d(
length, channels, start_index=index)
if hparams.add_or_concat_timing_signal == "add":
x_with_timing = x + common_layers.cast_like(signal, x)
elif hparams.add_or_concat_timing_signal == "concat":
batch_size = common_layers.shape_list(x)[0]
signal_tiled = tf.tile(signal, [batch_size, 1, 1])
x_with_timing = tf.concat((x, signal_tiled), axis=-1)
return x_with_timing