當前位置: 首頁>>代碼示例>>Python>>正文


Python common_attention.get_layer_timing_signal_sinusoid_1d方法代碼示例

本文整理匯總了Python中tensor2tensor.layers.common_attention.get_layer_timing_signal_sinusoid_1d方法的典型用法代碼示例。如果您正苦於以下問題:Python common_attention.get_layer_timing_signal_sinusoid_1d方法的具體用法?Python common_attention.get_layer_timing_signal_sinusoid_1d怎麽用?Python common_attention.get_layer_timing_signal_sinusoid_1d使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensor2tensor.layers.common_attention的用法示例。


在下文中一共展示了common_attention.get_layer_timing_signal_sinusoid_1d方法的2個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: add_step_timing_signal

# 需要導入模塊: from tensor2tensor.layers import common_attention [as 別名]
# 或者: from tensor2tensor.layers.common_attention import get_layer_timing_signal_sinusoid_1d [as 別名]
def add_step_timing_signal(x, step, hparams):
  """Add n-dimensional embedding as the step (vertical) timing signal.

  Args:
    x: a tensor with shape [batch, length, depth]
    step: step
    hparams: model hyper parameters

  Returns:
    a Tensor with the same shape as x.

  """
  num_steps = (
      hparams.act_max_steps
      if hparams.recurrence_type == "act" else hparams.num_rec_steps)
  channels = common_layers.shape_list(x)[-1]

  if hparams.step_timing_signal_type == "learned":
    signal = common_attention.get_layer_timing_signal_learned_1d(
        channels, step, num_steps)

  elif hparams.step_timing_signal_type == "sinusoid":
    signal = common_attention.get_layer_timing_signal_sinusoid_1d(
        channels, step, num_steps)

  if hparams.add_or_concat_timing_signal == "add":
    x_with_timing = x + signal

  elif hparams.add_or_concat_timing_signal == "concat":
    batch_size = common_layers.shape_list(x)[0]
    length = common_layers.shape_list(x)[1]
    signal_tiled = tf.tile(signal, [batch_size, length, 1])
    x_with_timing = tf.concat((x, signal_tiled), axis=-1)

  return x_with_timing 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:37,代碼來源:universal_transformer_util.py

示例2: add_step_timing_signal

# 需要導入模塊: from tensor2tensor.layers import common_attention [as 別名]
# 或者: from tensor2tensor.layers.common_attention import get_layer_timing_signal_sinusoid_1d [as 別名]
def add_step_timing_signal(x, step, hparams):
  """Add n-dimensional embedding as the step (vertical) timing signal.

  Args:
    x: a tensor with shape [batch, length, depth]
    step: step
    hparams: model hyper parameters

  Returns:
    a Tensor with the same shape as x.

  """
  if hparams.recurrence_type == "act":
    num_steps = hparams.act_max_steps
  else:
    num_steps = hparams.num_rec_steps
  channels = common_layers.shape_list(x)[-1]

  if hparams.step_timing_signal_type == "learned":
    signal = common_attention.get_layer_timing_signal_learned_1d(
        channels, step, num_steps)

  elif hparams.step_timing_signal_type == "sinusoid":
    signal = common_attention.get_layer_timing_signal_sinusoid_1d(
        channels, step, num_steps)

  if hparams.add_or_concat_timing_signal == "add":
    x_with_timing = x + common_layers.cast_like(signal, x)

  elif hparams.add_or_concat_timing_signal == "concat":
    batch_size = common_layers.shape_list(x)[0]
    length = common_layers.shape_list(x)[1]
    signal_tiled = tf.tile(signal, [batch_size, length, 1])
    x_with_timing = tf.concat((x, signal_tiled), axis=-1)

  return x_with_timing 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:38,代碼來源:universal_transformer_util.py


注:本文中的tensor2tensor.layers.common_attention.get_layer_timing_signal_sinusoid_1d方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。