本文整理匯總了Python中tensor2tensor.layers.common_attention.add_timing_signal_nd方法的典型用法代碼示例。如果您正苦於以下問題:Python common_attention.add_timing_signal_nd方法的具體用法?Python common_attention.add_timing_signal_nd怎麽用?Python common_attention.add_timing_signal_nd使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensor2tensor.layers.common_attention
的用法示例。
在下文中一共展示了common_attention.add_timing_signal_nd方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: add_pos_signals
# 需要導入模塊: from tensor2tensor.layers import common_attention [as 別名]
# 或者: from tensor2tensor.layers.common_attention import add_timing_signal_nd [as 別名]
def add_pos_signals(x, hparams, name="pos_emb"):
with tf.variable_scope(name, reuse=False):
if hparams.pos == "timing":
x = common_attention.add_timing_signal_nd(x)
else:
assert hparams.pos == "emb"
x = common_attention.add_positional_embedding_nd(
x, hparams.max_length, name)
return x
示例2: embed
# 需要導入模塊: from tensor2tensor.layers import common_attention [as 別名]
# 或者: from tensor2tensor.layers.common_attention import add_timing_signal_nd [as 別名]
def embed(self, x, name="embedding"):
"""Input embedding with a non-zero bias for uniform inputs."""
with tf.variable_scope(name, reuse=tf.AUTO_REUSE):
x_shape = common_layers.shape_list(x)
# Merge channels and depth before embedding.
x = tf.reshape(x, x_shape[:-2] + [x_shape[-2] * x_shape[-1]])
x = tf.layers.dense(
x,
self.hparams.hidden_size,
name="embed",
activation=common_layers.belu,
bias_initializer=tf.random_normal_initializer(stddev=0.01))
x = common_layers.layer_norm(x, name="ln_embed")
return common_attention.add_timing_signal_nd(x)
示例3: encoder
# 需要導入模塊: from tensor2tensor.layers import common_attention [as 別名]
# 或者: from tensor2tensor.layers.common_attention import add_timing_signal_nd [as 別名]
def encoder(self, x):
with tf.variable_scope("encoder"):
hparams = self.hparams
kernel, strides = self._get_kernel_and_strides()
residual_kernel = (hparams.residual_kernel_height,
hparams.residual_kernel_width)
residual_kernel1d = (hparams.residual_kernel_height, 1)
residual_kernel = residual_kernel1d if self.is1d else residual_kernel
residual_conv = tf.layers.conv2d
if hparams.residual_use_separable_conv:
residual_conv = tf.layers.separable_conv2d
# Input embedding with a non-zero bias for uniform inputs.
x = tf.layers.dense(
x,
hparams.hidden_size,
name="embed",
activation=common_layers.belu,
bias_initializer=tf.random_normal_initializer(stddev=0.01))
x = common_attention.add_timing_signal_nd(x)
# Down-convolutions.
for i in range(hparams.num_hidden_layers):
with tf.variable_scope("layer_%d" % i):
x = self.make_even_size(x)
x = self.dropout(x)
filters = hparams.hidden_size * 2**(i + 1)
filters = min(filters, hparams.max_hidden_size)
x = tf.layers.conv2d(
x,
filters,
kernel,
strides=strides,
padding="SAME",
activation=common_layers.belu,
name="strided")
y = x
for r in range(hparams.num_residual_layers):
residual_filters = filters
if r < hparams.num_residual_layers - 1:
residual_filters = int(
filters * hparams.residual_filter_multiplier)
y = residual_conv(
y,
residual_filters,
residual_kernel,
padding="SAME",
activation=common_layers.belu,
name="residual_%d" % r)
x += tf.nn.dropout(y, 1.0 - hparams.residual_dropout)
x = common_layers.layer_norm(x)
return x
示例4: decoder
# 需要導入模塊: from tensor2tensor.layers import common_attention [as 別名]
# 或者: from tensor2tensor.layers.common_attention import add_timing_signal_nd [as 別名]
def decoder(self, x):
with tf.variable_scope("decoder"):
hparams = self.hparams
kernel, strides = self._get_kernel_and_strides()
residual_kernel = (hparams.residual_kernel_height,
hparams.residual_kernel_width)
residual_kernel1d = (hparams.residual_kernel_height, 1)
residual_kernel = residual_kernel1d if self.is1d else residual_kernel
residual_conv = tf.layers.conv2d
if hparams.residual_use_separable_conv:
residual_conv = tf.layers.separable_conv2d
# Up-convolutions.
for i in range(hparams.num_hidden_layers):
j = hparams.num_hidden_layers - i - 1
filters = hparams.hidden_size * 2**j
filters = min(filters, hparams.max_hidden_size)
with tf.variable_scope("layer_%d" % i):
j = hparams.num_hidden_layers - i - 1
filters = hparams.hidden_size * 2**j
x = tf.layers.conv2d_transpose(
x,
filters,
kernel,
strides=strides,
padding="SAME",
activation=common_layers.belu,
name="strided")
y = x
for r in range(hparams.num_residual_layers):
residual_filters = filters
if r < hparams.num_residual_layers - 1:
residual_filters = int(
filters * hparams.residual_filter_multiplier)
y = residual_conv(
y,
residual_filters,
residual_kernel,
padding="SAME",
activation=common_layers.belu,
name="residual_%d" % r)
x += tf.nn.dropout(y, 1.0 - hparams.residual_dropout)
x = common_layers.layer_norm(x)
x = common_attention.add_timing_signal_nd(x)
return x
示例5: encoder
# 需要導入模塊: from tensor2tensor.layers import common_attention [as 別名]
# 或者: from tensor2tensor.layers.common_attention import add_timing_signal_nd [as 別名]
def encoder(self, x):
with tf.variable_scope("encoder"):
hparams = self.hparams
layers = []
kernel, strides = self._get_kernel_and_strides()
residual_kernel = (hparams.residual_kernel_height,
hparams.residual_kernel_width)
residual_kernel1d = (hparams.residual_kernel_height, 1)
residual_kernel = residual_kernel1d if self.is1d else residual_kernel
residual_conv = tf.layers.conv2d
if hparams.residual_use_separable_conv:
residual_conv = tf.layers.separable_conv2d
# Down-convolutions.
for i in range(hparams.num_hidden_layers):
with tf.variable_scope("layer_%d" % i):
x = self.make_even_size(x)
layers.append(x)
x = self.dropout(x)
filters = hparams.hidden_size * 2**(i + 1)
filters = min(filters, hparams.max_hidden_size)
x = common_attention.add_timing_signal_nd(x)
x = tf.layers.conv2d(
x,
filters,
kernel,
strides=strides,
padding="SAME",
activation=common_layers.belu,
name="strided")
y = x
y = tf.nn.dropout(y, 1.0 - hparams.residual_dropout)
for r in range(hparams.num_residual_layers):
residual_filters = filters
if r < hparams.num_residual_layers - 1:
residual_filters = int(
filters * hparams.residual_filter_multiplier)
y = residual_conv(
y,
residual_filters,
residual_kernel,
padding="SAME",
activation=common_layers.belu,
name="residual_%d" % r)
x += y
x = common_layers.layer_norm(x, name="ln")
return x, layers
示例6: decoder
# 需要導入模塊: from tensor2tensor.layers import common_attention [as 別名]
# 或者: from tensor2tensor.layers.common_attention import add_timing_signal_nd [as 別名]
def decoder(self, x, encoder_layers=None):
with tf.variable_scope("decoder"):
hparams = self.hparams
is_training = self.hparams.mode == tf.estimator.ModeKeys.TRAIN
kernel, strides = self._get_kernel_and_strides()
residual_kernel = (hparams.residual_kernel_height,
hparams.residual_kernel_width)
residual_kernel1d = (hparams.residual_kernel_height, 1)
residual_kernel = residual_kernel1d if self.is1d else residual_kernel
residual_conv = tf.layers.conv2d
if hparams.residual_use_separable_conv:
residual_conv = tf.layers.separable_conv2d
# Up-convolutions.
for i in range(hparams.num_hidden_layers):
j = hparams.num_hidden_layers - i - 1
if is_training:
nomix_p = common_layers.inverse_lin_decay(
int(hparams.bottleneck_warmup_steps * 0.25 * 2**j)) + 0.01
if common_layers.should_generate_summaries():
tf.summary.scalar("nomix_p_%d" % j, nomix_p)
filters = hparams.hidden_size * 2**j
filters = min(filters, hparams.max_hidden_size)
with tf.variable_scope("layer_%d" % i):
j = hparams.num_hidden_layers - i - 1
x = tf.layers.conv2d_transpose(
x,
filters,
kernel,
strides=strides,
padding="SAME",
activation=common_layers.belu,
name="strided")
y = x
for r in range(hparams.num_residual_layers):
residual_filters = filters
if r < hparams.num_residual_layers - 1:
residual_filters = int(
filters * hparams.residual_filter_multiplier)
y = residual_conv(
y,
residual_filters,
residual_kernel,
padding="SAME",
activation=common_layers.belu,
name="residual_%d" % r)
x += tf.nn.dropout(y, 1.0 - hparams.residual_dropout)
x = common_layers.layer_norm(x, name="ln")
x = common_attention.add_timing_signal_nd(x)
if encoder_layers is not None:
enc_x = encoder_layers[j]
enc_shape = common_layers.shape_list(enc_x)
x_mix = x[:enc_shape[0], :enc_shape[1], :enc_shape[2], :]
if is_training: # Mix at the beginning of training.
rand = tf.random_uniform(common_layers.shape_list(x_mix))
x_mix = tf.where(tf.less(rand, nomix_p), x_mix, enc_x)
if hparams.gan_loss_factor != 0:
x_gan = x[enc_shape[0]:, :enc_shape[1], :enc_shape[2], :]
x = tf.concat([x_mix, x_gan], axis=0)
else:
x = x_mix
return x