當前位置: 首頁>>代碼示例>>Python>>正文


Python tarfile.extractall方法代碼示例

本文整理匯總了Python中tarfile.extractall方法的典型用法代碼示例。如果您正苦於以下問題:Python tarfile.extractall方法的具體用法?Python tarfile.extractall怎麽用?Python tarfile.extractall使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tarfile的用法示例。


在下文中一共展示了tarfile.extractall方法的10個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: extract_tarfile

# 需要導入模塊: import tarfile [as 別名]
# 或者: from tarfile import extractall [as 別名]
def extract_tarfile(tar_location, tar_flag, extract_location, name_of_file):
  """Attempts to extract a tar file (tgz).

  If the file is not found, or the extraction of the contents failed, the
  exception will be caught and the function will return False. If successful,
  the tar file will be removed.

  Args:
    tar_location: A string of the current location of the tgz file
    tar_flag: A string indicating the mode to open the tar file.
        tarfile.extractall will generate an error if a flag with permissions
        other than read is passed.
    extract_location: A string of the path the file will be extracted to.
    name_of_file: A string with the name of the file, for printing purposes.
  Returns:
    Boolean: Whether or not the tar extraction succeeded.
  """
  try:
    with tarfile.open(tar_location, tar_flag) as tar:
      tar.extractall(path=extract_location, members=tar)
    os.remove(tar_location)
    print "\t" + name_of_file + " successfully extracted."
    return True
  except tarfile.ExtractError:
    return False 
開發者ID:google,項目名稱:fplutil,代碼行數:27,代碼來源:util.py

示例2: generator

# 需要導入模塊: import tarfile [as 別名]
# 或者: from tarfile import extractall [as 別名]
def generator(self, data_dir, tmp_dir, datasets,
                eos_list=None, start_from=0, how_many=0):
    del eos_list
    i = 0
    for url, subdir in datasets:
      filename = os.path.basename(url)
      compressed_file = generator_utils.maybe_download(tmp_dir, filename, url)

      read_type = "r:gz" if filename.endswith("tgz") else "r"
      with tarfile.open(compressed_file, read_type) as corpus_tar:
        # Create a subset of files that don't already exist.
        #   tarfile.extractall errors when encountering an existing file
        #   and tarfile.extract is extremely slow
        members = []
        for f in corpus_tar:
          if not os.path.isfile(os.path.join(tmp_dir, f.name)):
            members.append(f)
        corpus_tar.extractall(tmp_dir, members=members)

      data_dir = os.path.join(tmp_dir, "LibriSpeech", subdir)
      data_files = _collect_data(data_dir, "flac", "txt")
      data_pairs = data_files.values()

      encoders = self.feature_encoders(None)
      audio_encoder = encoders["waveforms"]
      text_encoder = encoders["targets"]

      for utt_id, media_file, text_data in sorted(data_pairs)[start_from:]:
        if how_many > 0 and i == how_many:
          return
        i += 1
        wav_data = audio_encoder.encode(media_file)
        spk_id, unused_book_id, _ = utt_id.split("-")
        yield {
            "waveforms": wav_data,
            "waveform_lens": [len(wav_data)],
            "targets": text_encoder.encode(text_data),
            "raw_transcript": [text_data],
            "utt_id": [utt_id],
            "spk_id": [spk_id],
        } 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:43,代碼來源:librispeech.py

示例3: generator

# 需要導入模塊: import tarfile [as 別名]
# 或者: from tarfile import extractall [as 別名]
def generator(self, data_dir, tmp_dir, datasets,
                eos_list=None, start_from=0, how_many=0):
    del eos_list
    i = 0
    for url, subdir in datasets:
      filename = os.path.basename(url)
      compressed_file = generator_utils.maybe_download(tmp_dir, filename, url)

      read_type = "r:gz" if filename.endswith("tgz") else "r"
      with tarfile.open(compressed_file, read_type) as corpus_tar:
        # Create a subset of files that don't already exist.
        #   tarfile.extractall errors when encountering an existing file
        #   and tarfile.extract is extremely slow
        members = []
        for f in corpus_tar:
          if not os.path.isfile(os.path.join(tmp_dir, f.name)):
            members.append(f)
        corpus_tar.extractall(tmp_dir, members=members)

      raw_data_dir = os.path.join(tmp_dir, "LibriSpeech", subdir)
      data_files = _collect_data(raw_data_dir, "flac", "txt")
      data_pairs = data_files.values()

      encoders = self.feature_encoders(data_dir)
      audio_encoder = encoders["waveforms"]
      text_encoder = encoders["targets"]

      for utt_id, media_file, text_data in sorted(data_pairs)[start_from:]:
        if how_many > 0 and i == how_many:
          return
        i += 1
        wav_data = audio_encoder.encode(media_file)
        spk_id, unused_book_id, _ = utt_id.split("-")
        yield {
            "waveforms": wav_data,
            "waveform_lens": [len(wav_data)],
            "targets": text_encoder.encode(text_data),
            "raw_transcript": [text_data],
            "utt_id": [utt_id],
            "spk_id": [spk_id],
        } 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:43,代碼來源:librispeech.py

示例4: extract_zipfile

# 需要導入模塊: import tarfile [as 別名]
# 或者: from tarfile import extractall [as 別名]
def extract_zipfile(zip_location, zip_flag, extract_location, name_of_file):
  """Attempts to extract a zip file (zip).

  If the file is not found, or the extraction of the contents failed, the
  exception will be caught and the function will return False. If successful,
  the zip file will be removed.

  Args:
    zip_location: A string of the current location of the zip file
    zip_flag: A string indicating the mode to open the zip file.
        zipfile.extractall will generate an error if a flag with permissions
        other than read is passed.
    extract_location: A string of the path the file will be extracted to.
    name_of_file: A string with the name of the file, for printing purposes.
  Returns:
    Boolean: Whether or not the zip extraction succeeded.
  """
  try:
    with zipfile.ZipFile(zip_location, zip_flag) as zf:
      zf.extractall(extract_location)
    os.remove(zip_location)
    print "\t" + name_of_file + " successfully extracted."
    return True
  except zipfile.BadZipfile:
    sys.stderr.write("\t" + name_of_file + " failed to extract.\n")
    return False 
開發者ID:google,項目名稱:fplutil,代碼行數:28,代碼來源:util.py

示例5: generator

# 需要導入模塊: import tarfile [as 別名]
# 或者: from tarfile import extractall [as 別名]
def generator(self,
                data_dir,
                tmp_dir,
                datasets,
                eos_list=None,
                start_from=0,
                how_many=0):
    del eos_list
    i = 0

    filename = os.path.basename(_COMMONVOICE_URL)
    compressed_file = generator_utils.maybe_download(tmp_dir, filename,
                                                     _COMMONVOICE_URL)

    read_type = "r:gz" if filename.endswith(".tgz") else "r"
    with tarfile.open(compressed_file, read_type) as corpus_tar:
      # Create a subset of files that don't already exist.
      #   tarfile.extractall errors when encountering an existing file
      #   and tarfile.extract is extremely slow. For security, check that all
      #   paths are relative.
      members = [
          f for f in corpus_tar if _is_relative(tmp_dir, f.name) and
          not _file_exists(tmp_dir, f.name)
      ]
      corpus_tar.extractall(tmp_dir, members=members)

    data_dir = os.path.join(tmp_dir, "cv_corpus_v1")
    data_tuples = _collect_data(data_dir)
    encoders = self.feature_encoders(None)
    audio_encoder = encoders["waveforms"]
    text_encoder = encoders["targets"]
    for dataset in datasets:
      data_tuples = (tup for tup in data_tuples if tup[0].startswith(dataset))
      for utt_id, media_file, text_data in tqdm.tqdm(
          sorted(data_tuples)[start_from:]):
        if how_many > 0 and i == how_many:
          return
        i += 1
        wav_data = audio_encoder.encode(media_file)
        yield {
            "waveforms": wav_data,
            "waveform_lens": [len(wav_data)],
            "targets": text_encoder.encode(text_data),
            "raw_transcript": [text_data],
            "utt_id": [utt_id],
            "spk_id": ["unknown"],
        } 
開發者ID:akzaidi,項目名稱:fine-lm,代碼行數:49,代碼來源:common_voice.py

示例6: generator

# 需要導入模塊: import tarfile [as 別名]
# 或者: from tarfile import extractall [as 別名]
def generator(self,
                data_dir,
                tmp_dir,
                datasets,
                eos_list=None,
                start_from=0,
                how_many=0):
    del eos_list
    i = 0

    filename = os.path.basename(_COMMONVOICE_URL)
    compressed_file = generator_utils.maybe_download(tmp_dir, filename,
                                                     _COMMONVOICE_URL)

    read_type = "r:gz" if filename.endswith(".tgz") else "r"
    with tarfile.open(compressed_file, read_type) as corpus_tar:
      # Create a subset of files that don't already exist.
      #   tarfile.extractall errors when encountering an existing file
      #   and tarfile.extract is extremely slow. For security, check that all
      #   paths are relative.
      members = [
          f for f in corpus_tar if _is_relative(tmp_dir, f.name) and
          not _file_exists(tmp_dir, f.name)
      ]
      corpus_tar.extractall(tmp_dir, members=members)

    raw_data_dir = os.path.join(tmp_dir, "cv_corpus_v1")
    data_tuples = _collect_data(raw_data_dir)
    encoders = self.feature_encoders(data_dir)
    audio_encoder = encoders["waveforms"]
    text_encoder = encoders["targets"]
    for dataset in datasets:
      data_tuples = (tup for tup in data_tuples if tup[0].startswith(dataset))
      for utt_id, media_file, text_data in tqdm.tqdm(
          sorted(data_tuples)[start_from:]):
        if how_many > 0 and i == how_many:
          return
        i += 1
        wav_data = audio_encoder.encode(media_file)
        yield {
            "waveforms": wav_data,
            "waveform_lens": [len(wav_data)],
            "targets": text_encoder.encode(text_data),
            "raw_transcript": [text_data],
            "utt_id": [utt_id],
            "spk_id": ["unknown"],
        } 
開發者ID:tensorflow,項目名稱:tensor2tensor,代碼行數:49,代碼來源:common_voice.py

示例7: _analyze_tarfile_for_import

# 需要導入模塊: import tarfile [as 別名]
# 或者: from tarfile import extractall [as 別名]
def _analyze_tarfile_for_import(tarfile, project, schema, tmpdir):

    def read_sp_manifest_file(path):
        # Must use forward slashes, not os.path.sep.
        fn_manifest = _tarfile_path_join(path, project.Job.FN_MANIFEST)
        try:
            with closing(tarfile.extractfile(fn_manifest)) as file:
                if sys.version_info < (3, 6):
                    return json.loads(file.read().decode())
                else:
                    return json.loads(file.read())
        except KeyError:
            pass

    if schema is None:
        schema_function = read_sp_manifest_file
    elif callable(schema):
        schema_function = _with_consistency_check(schema, read_sp_manifest_file)
    elif isinstance(schema, str):
        schema_function = _with_consistency_check(
            _make_path_based_schema_function(schema), read_sp_manifest_file)
    else:
        raise TypeError("The schema variable must be None, callable, or a string.")

    mappings = dict()
    skip_subdirs = set()

    dirs = [member.name for member in tarfile.getmembers() if member.isdir()]
    for name in sorted(dirs):
        if os.path.dirname(name) in skip_subdirs:   # skip all sub-dirs of identified dirs
            skip_subdirs.add(name)
            continue

        sp = schema_function(name)
        if sp is not None:
            job = project.open_job(sp)
            if os.path.exists(job.workspace()):
                raise DestinationExistsError(job)
            mappings[name] = job
            skip_subdirs.add(name)

    # Check uniqueness
    if len(set(mappings.values())) != len(mappings):
        raise StatepointParsingError(
            "The jobs identified with the given schema function are not unique!")

    tarfile.extractall(path=tmpdir)
    for path, job in mappings.items():
        src = os.path.join(tmpdir, path)
        assert os.path.isdir(tmpdir)
        assert os.path.isdir(src)
        yield src, _CopyFromTarFileExecutor(src, job) 
開發者ID:glotzerlab,項目名稱:signac,代碼行數:54,代碼來源:import_export.py

示例8: download_nidm_pain

# 需要導入模塊: import tarfile [as 別名]
# 或者: from tarfile import extractall [as 別名]
def download_nidm_pain(data_dir=None, overwrite=False, verbose=1):
    """
    Download NIDM Results for 21 pain studies from NeuroVault for tests.

    Parameters
    ----------
    data_dir : :obj:`str`, optional
        Location in which to place the studies. Default is None, which uses the
        package's default path for downloaded data.
    overwrite : :obj:`bool`, optional
        Whether to overwrite existing files or not. Default is False.
    verbose : :obj:`int`, optional
        Default is 1.

    Returns
    -------
    data_dir : :obj:`str`
        Updated data directory pointing to dataset files.
    """
    url = 'https://neurovault.org/collections/1425/download'

    dataset_name = 'nidm_21pain'

    data_dir = _get_dataset_dir(dataset_name, data_dir=data_dir, verbose=verbose)
    desc_file = op.join(data_dir, 'description.txt')
    if op.isfile(desc_file) and overwrite is False:
        return data_dir

    # Download
    fname = op.join(data_dir, url.split('/')[-1])
    _download_zipped_file(url, filename=fname)

    # Unzip
    with zipfile.ZipFile(fname, 'r') as zip_ref:
        zip_ref.extractall(data_dir)

    collection_folders = [f for f in glob(op.join(data_dir, '*')) if '.nidm' not in f]
    collection_folders = [f for f in collection_folders if op.isdir(f)]
    if len(collection_folders) > 1:
        raise Exception('More than one folder found: '
                        '{0}'.format(', '.join(collection_folders)))
    else:
        folder = collection_folders[0]
    zip_files = glob(op.join(folder, '*.zip'))
    for zf in zip_files:
        fn = op.splitext(op.basename(zf))[0]
        with zipfile.ZipFile(zf, 'r') as zip_ref:
            zip_ref.extractall(op.join(data_dir, fn))

    os.remove(fname)
    shutil.rmtree(folder)

    with open(desc_file, 'w') as fo:
        fo.write('21 pain studies in NIDM-results packs.')
    return data_dir 
開發者ID:neurostuff,項目名稱:NiMARE,代碼行數:57,代碼來源:extract.py

示例9: download_mallet

# 需要導入模塊: import tarfile [as 別名]
# 或者: from tarfile import extractall [as 別名]
def download_mallet(data_dir=None, overwrite=False, verbose=1):
    """
    Download the MALLET toolbox for LDA topic modeling.

    Parameters
    ----------
    data_dir : :obj:`str`, optional
        Location in which to place MALLET. Default is None, which uses the
        package's default path for downloaded data.
    overwrite : :obj:`bool`, optional
        Whether to overwrite existing files or not. Default is False.
    verbose : :obj:`int`, optional
        Default is 1.

    Returns
    -------
    data_dir : :obj:`str`
        Updated data directory pointing to MALLET files.
    """
    url = 'http://mallet.cs.umass.edu/dist/mallet-2.0.7.tar.gz'

    temp_dataset_name = 'mallet__temp'
    temp_data_dir = _get_dataset_dir(temp_dataset_name, data_dir=data_dir, verbose=verbose)

    dataset_name = 'mallet'
    data_dir = temp_data_dir.replace(temp_dataset_name, dataset_name)

    desc_file = op.join(data_dir, 'description.txt')
    if op.isfile(desc_file) and overwrite is False:
        shutil.rmtree(temp_data_dir)
        return data_dir

    mallet_file = op.join(temp_data_dir, op.basename(url))
    _download_zipped_file(url, mallet_file)

    with tarfile.open(mallet_file) as tf:
        tf.extractall(path=temp_data_dir)

    os.rename(op.join(temp_data_dir, 'mallet-2.0.7'), data_dir)

    os.remove(mallet_file)
    shutil.rmtree(temp_data_dir)

    with open(desc_file, 'w') as fo:
        fo.write('The MALLET toolbox for latent Dirichlet allocation.')

    if verbose > 0:
        print('\nDataset moved to {}\n'.format(data_dir))

    return data_dir 
開發者ID:neurostuff,項目名稱:NiMARE,代碼行數:52,代碼來源:extract.py

示例10: download_peaks2maps_model

# 需要導入模塊: import tarfile [as 別名]
# 或者: from tarfile import extractall [as 別名]
def download_peaks2maps_model(data_dir=None, overwrite=False, verbose=1):
    """
    Download the trained Peaks2Maps model from OHBM 2018.
    """
    url = "https://zenodo.org/record/1257721/files/ohbm2018_model.tar.xz?download=1"

    temp_dataset_name = 'peaks2maps_model_ohbm2018__temp'
    temp_data_dir = _get_dataset_dir(temp_dataset_name, data_dir=data_dir, verbose=verbose)

    dataset_name = 'peaks2maps_model_ohbm2018'
    data_dir = temp_data_dir.replace(temp_dataset_name, dataset_name)

    desc_file = op.join(data_dir, 'description.txt')
    if op.isfile(desc_file) and overwrite is False:
        shutil.rmtree(temp_data_dir)
        return data_dir

    LGR.info('Downloading the model (this is a one-off operation)...')
    # Streaming, so we can iterate over the response.
    r = requests.get(url, stream=True)
    f = BytesIO()

    # Total size in bytes.
    total_size = int(r.headers.get('content-length', 0))
    block_size = 1024 * 1024
    wrote = 0
    for data in tqdm(r.iter_content(block_size), total=math.ceil(total_size // block_size),
                     unit='MB', unit_scale=True):
        wrote = wrote + len(data)
        f.write(data)
    if total_size != 0 and wrote != total_size:
        raise Exception("Download interrupted")

    f.seek(0)
    LGR.info('Uncompressing the model to {}...'.format(temp_data_dir))
    tarfile = TarFile(fileobj=LZMAFile(f), mode="r")
    tarfile.extractall(temp_data_dir)

    os.rename(op.join(temp_data_dir, 'ohbm2018_model'), data_dir)
    shutil.rmtree(temp_data_dir)

    with open(desc_file, 'w') as fo:
        fo.write('The trained Peaks2Maps model from OHBM 2018.')

    if verbose > 0:
        print('\nDataset moved to {}\n'.format(data_dir))

    return data_dir 
開發者ID:neurostuff,項目名稱:NiMARE,代碼行數:50,代碼來源:extract.py


注:本文中的tarfile.extractall方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。